-
下載積分: 13 賞幣
上傳時(shí)間:2024-01-07
頁(yè)數(shù): 0
大?。?0.77(MB)
子文件數(shù):
-
下載積分: 13 賞幣
上傳時(shí)間:2024-01-07
頁(yè)數(shù): 0
大?。?0.92(MB)
子文件數(shù):
-
下載積分: 14 賞幣
上傳時(shí)間:2024-01-07
頁(yè)數(shù): 0
大?。?1.38(MB)
子文件數(shù):
-
下載積分: 13 賞幣
上傳時(shí)間:2024-01-07
頁(yè)數(shù): 0
大?。?0.58(MB)
子文件數(shù):
-
簡(jiǎn)介:FINITEELEMENTSINANALYSISANDDESIGN422006950–959WWWELSEVIERCOM/LOCATE/FINELREVIEWFINITEELEMENTANALYSISOFVEHICLE–BRIDGEINTERACTIONLESLAWKWASNIEWSKIA,?,HONGYILIB,JERRYWEKEZERB,JERZYMALACHOWSKICAWARSAWUNIVERSITYOFTECHNOLOGY,ALARMIILUDOWEJ16,00637WARSZAWA,POLANDBFLORIDAARECEIVEDINREVISEDFORM21JANUARY2006ACCEPTED21JANUARY2006AVAILABLEONLINE13MARCH2006ABSTRACTTHISPAPERPRESENTSRESULTSOFTHEFINITEELEMENTFEANALYSISOFDYNAMICINTERACTIONBETWEENAHEAVYTRUCKANDASELECTEDHIGHWAYBRIDGEONUS90INFLORIDAFEANALYSISOFVEHICLE–BRIDGEINTERACTIONWASCONDUCTEDUSINGCOMMERCIALPROGRAMLSDYNAANDTHESUPERCOMPUTERATTHEFLORIDASTATEUNIVERSITYDEVELOPMENTANDIMPLEMENTATIONOFADETAILEDFETRUCKMODELWITH3DSUSPENSIONSYSTEMS,PNEUMATICANDROTATINGWHEELS,APPROPRIATECONTACTALGORITHMS,ALLOWEDFORREALISTICREPRESENTATIONOFTHEACTUALVEHICLEDYNAMICLOADINGSEVERALSTATICANDDYNAMICFIELDTESTSWEREPERFORMEDONTHESAMEBRIDGETHEEXPERIMENTALDATAWASUSEDFORVALIDATIONOFTHEFEMODELSOFTHEBRIDGEANDTHETRUCKNUMERICALRESULTSWEREFOUNDTOMATCHWELLWITHTHEEXPERIMENTALDATARESULTSPRESENTEDINTHEPAPERDEMONSTRATEASIGNIFICANTPOTENTIALOFUSINGCOMPUTATIONALMECHANICSANDLSDYNACODEFORTHOROUGHINVESTIGATIONOFTHEVEHICLE–BRIDGEINTERACTION,DYNAMICIMPACTFACTORS,ANDTHEULTIMATELOADINGOFBRIDGES?2006ELSEVIERBVALLRIGHTSRESERVEDKEYWORDSVEHICLE–BRIDGEINTERACTIONIMPACTFACTORBRIDGEDYNAMICSFINITEELEMENTANALYSISCOMPUTERSIMULATIONLSDYNACONTENTS1INTRODUCTION9502DESCRIPTIONOFTHEMODELEDBRIDGE9513FIELDTEST9524DEVELOPMENTOFFEBRIDGEMODEL95241FEMODELOFTHETRUCK9535VALIDATIONOFFEMODELS9546NUMERICALANDEXPERIMENTALANALYSISOFVEHICLE–BRIDGEINTERACTION9547SUMMARYANDCONCLUSIONS957ACKNOWLEDGEMENTS958REFERENCES9581INTRODUCTIONNONLINEARFINITEELEMENTFEMETHODSARENOWADAYSCOMMONLYUSEDTOSOLVEENGINEERINGPROBLEMSONESUCH?CORRESPONDINGAUTHORTEL48227519552FAX48228256532EMAILADDRESSESLKWASNIEWSKIILPWEDUPLLKWASNIEWSKI,LIHONGYENGFSUEDUHLI,WEKEZERENGFSUEDUJWEKEZER,MALACHOWSKIWMEWATEDUPLJMALACHOWSKI0168874X/SEEFRONTMATTER?2006ELSEVIERBVALLRIGHTSRESERVEDDOI101016/JFINEL200601014ENGINEERINGAREAISTHEEFFICIENTMANAGEMENTOFHIGHWAYFACILITIES,ESPECIALLYBRIDGES,WHERETHEKNOWLEDGEOFACTUALDYNAMICLOADEFFECTS,LOADCARRYINGCAPACITY,ANDCURRENTCONDITIONISCRITICALINMAKINGMANAGEMENTDECISIONSANDINESTABLISHINGPERMISSIBLEWEIGHTLIMITSSIGNIFICANTDYNAMICEFFECTSCANBETRIGGEREDBYINCREASINGLYHEAVIERVEHICLES,WHICHARENOWUSEDONOURHIGHWAYS1,2ADDITIONALDYNAMICEFFECTSAREACCOUNTEDFORBYDYNAMICIMPACTFACTORSINTRODUCEDINBRIDGEDESIGNCODESTHEIMPACTFACTORIM13,ALSOREFERREDTOAS952LKWASNIEWSKIETAL/FINITEELEMENTSINANALYSISANDDESIGN422006950–959TRUCKONEASTBOUNDSOUTHNORTH1075M12345X2400M12000M561075M062M062M062M062M07M07M2500M2500MTRUCKONWESTBOUNDFIG2BRIDGECROSSSECTIONANDTRUCKPOSITIONSDURINGFIELDEXPERIMENTS3FIELDTESTSTATICANDDYNAMICTESTSWERECONDUCTEDONTHEBRIDGETWOTRUCKSLOADEDWITH12CONCRETEBLOCKSEACHFIG5WEREUSEDFORLOADINGTHEFRONT,DRIVE,ANDREARAXLELOADSWERE50KN1124KIP,100KN2248KIPAND169KN380KIP,RESPECTIVELYTHETOTALWEIGHTWASAPPROXIMATELY319KN717KIP,WHICHISCLOSETOTHE325KN731KIPASSPECIFIEDBYAASHTOSTANDARDSPECIFICATIONSFORTHEHS20–44TRUCK13THESTATICTESTRESULTSWEREUSEDTODETERMINETHEWHEELLOADDISTRIBUTIONFACTORSFORGIRDERSANDASREFERENCEDATAFORCALCULATIONOFIMPACTFACTORSTHELONGITUDINALTRUCKPOSITIONWASDETERMINEDTOYIELDTHEMAXIMUMSTRESSESATTHEMIDDLESECTIONOFTHEFIRSTSPANTHEDYNAMICTESTSINCLUDEDPASSESOFONEANDTWOTRUCKSSIDEBYSIDE,WITHANDWITHOUTAPIECEOFWOODPOSITIONEDACROSSTHEDECKAWOODENPLANK,40MM157INTHICKAND400MM157INWIDEWASPLACEDACROSSTHEMIDDLESECTIONOFTHEEASTSPANTOSIMULATEMAJORDETERIORATIONOFTHEDECKSURFACEMOREOVER,ITWASEXPECTEDTHATTHEPLANKWOULDHELPEXCITEDOMINANTFLEXURALMODESCORRESPONDINGTOLOWFREQUENCIES16TWOTRUCKSPEEDSWEREUSEDMEDIUM48KM/H30MPHANDHIGHSPEED80KM/H50MPHTHEEASTSPANANDTHEMIDDLESPANWEREINSTRUMENTEDFORALLTESTSFIG1DISPLACEMENT,STRAIN,ANDACCELERATIONDATAWERECOLLECTEDATTHESELECTEDPOINTSWHERETHEBRIDGERESPONSEWASEXPECTEDTOBEWELLREPRESENTEDADDITIONALLY,FOURACCELEROMETERSWEREPLACEDONONEOFTHEVEHICLESTOPROVIDEDATAFORVALIDATIONOFTHETRUCKMODELMOREDETAILSOFTHETESTDATAANDEXPERIMENTALRESULTSAREPRESENTEDIN174DEVELOPMENTOFFEBRIDGEMODELTHEFEMODELOFONESPANINCLUDESALLFIVESTRUCTURALCOMPONENTSTHESLAB,SIXBEAMS,BRIDGEBARRIERS,DIAPHRAGMS,ANDNEOPRENEPADSFIG3SHOWSACUTAWAYSEGMENTOFTHEFEMODELFORONESPANCONCRETEPARTSOFTHEBRIDGEAREBUILTOFFULLYINTEGRATEDSOLIDELEMENTSWITHEIGHTORSIXNODESALLREFIG3ACUTAWAYSECTIONOFTHEFEBRIDGEMODELBARSANDSTRANDSAREMODELEDUSING1DBARELEMENTSWITHNODESCOINCIDINGWITHCORRESPONDINGNODESOFTHESOLIDELEMENTSTHELOCATIONSOFSOMEREBARSINTHEFEMODELWERESLIGHTLYREALIGNEDWHENEVERNECESSARYTOFITINTOGEOMETRICFEMESHOFTHEBRIDGENEOPRENEPADSAREREPRESENTEDBY3DSOLIDELEMENTSWITHVISCOELASTICMATERIALPROPERTIES18DIMENSIONSOFELEMENTSINTHEBRIDGEMODELWEREOPTIMIZEDCONSIDERINGTHELOCATIONOFTHEREINFORCEMENT,REQUIREMENTSFORTIREDECKCONTACTALGORITHM,INTEGRATIONTIMESTEP18ANDTOTALNUMBEROFFEELEMENTSEACHGIRDERHAS24NO131860MPALOWRELAXATIONSTRAIGHTSTRANDSATTHEBOTTOMFLANGETHEMESHSIZEREQUIREMENTMAKESITUNABLETOMODELINDIVIDUALLYALL24STRANDSTHEREFORESEVERALSTRANDSWERELUMPEDTOGETHERTOREPRESENTTHECORRECTSTIFFNESSOFTHEGIRDERCROSSSECTIONASPECIALLSDYNAMATERIALMODELCALLED“CABLE”18WASAPPLIEDTOINTRODUCEPRESTRESSINGFORCESINTHERODELEMENTSTHISMATERIALMODELALLOWEDFORINTRODUCTIONOFINITIALTENSILEFORCEBYDEFININGAPPROPRIATEINITIALELONGATIONTHEPRESTRESSMODELAPPEARSTOBECRITICALWHENTHEBRIDGEGIRDERSARELOADEDUPTOFAILUREOVER204,000FEWEREUSEDFORONESPANOFTHEBRIDGEMODEL
下載積分: 10 賞幣
上傳時(shí)間:2024-03-13
頁(yè)數(shù): 10
大小: 0.69(MB)
子文件數(shù):
-
簡(jiǎn)介:中文中文6700漢字,漢字,4500單詞,單詞,24000英文字符英文字符出處出處OCHSENDORFJASELFANCHOREDSUSPENSIONBRIDGES/JJOURNALOFBRIDGEENGINEERING,1999,42151156自錨式懸索橋摘要摘要本文總結(jié)了自錨式懸索橋的起源并分析其未來(lái)發(fā)展,探討了這種獨(dú)特橋梁形式的發(fā)展?fàn)顩r以及在過(guò)去一個(gè)世紀(jì)它的用途和優(yōu)缺點(diǎn)。位于日本大阪的此花大橋就是這種類型,它也為研究比較傳統(tǒng)懸索橋理論與有限元模型結(jié)果提供了一個(gè)案例。本文的最后部分評(píng)估自錨式懸索橋設(shè)計(jì)的潛力,并為設(shè)計(jì)工程師提供建議。本文旨在大體上描述自錨式橋梁特別是此花大橋的結(jié)構(gòu)性能。引言自錨式懸索橋不需要大量的端錨,因此不同于傳統(tǒng)懸索橋。相反,承載纜索拉力組件的主纜固定到每一端橋面板或加勁梁上,因此末端支撐只須抵消張力的垂直分量而不需要調(diào)節(jié)外錨。因?yàn)榧觿帕褐卫|索拉力,所以必須在安裝主纜之前安放好加勁梁。這種與傳統(tǒng)懸索橋截然相反的施工順序?yàn)榱诉m應(yīng)跨徑而限制了自錨的形式。也不同于傳統(tǒng)懸索形式,對(duì)自錨式橋梁的分析必須包括橋面板較大軸力的影響。帶著這些問(wèn)題,本文將探討這種橋型的歷史發(fā)展、結(jié)構(gòu)分析和潛在應(yīng)用,并對(duì)最近建成的自錨式懸索橋總結(jié)一些反思。歷史發(fā)展19世紀(jì)下半葉,奧地利工程師JOSEFLANGER和美國(guó)工程師CHARLESBENDER獨(dú)立構(gòu)思了自錨式懸索橋(1936A穆林斯)。在1859年LANGER第一個(gè)寫(xiě)下他的想法,而B(niǎo)ENDER在1867年發(fā)布專利(1867年“專利”)確定自己的所有權(quán)。他們二人都沒(méi)有使用連續(xù)纜索,而是把主纜固定在跨中梁段和橋的兩1新澤西州普林斯頓大學(xué)土木工程系環(huán)境管理研究生2新澤西州普林斯頓大學(xué)土木工程系環(huán)境管理教授GORDONYSWU端。1870年LANGER在波蘭建設(shè)了用于的鐵路交通小自錨式橋梁,而B(niǎo)ENDER顯然從未建造過(guò)自錨式橋梁。雖然這些工程師并沒(méi)有直接影響未來(lái)的設(shè)計(jì),但是在20世紀(jì)初的德國(guó),自錨式懸索橋已流行開(kāi)來(lái)。1915年德國(guó)工程師在科隆建造了第一座橫跨萊茵河的大型自錨式懸索橋(1936B穆林斯)(圖1)。這座科隆道依茨橋主跨為185米,在吊索安裝到位之前是采用臨時(shí)腳圖11915年德國(guó)原科隆道依茨大橋(1990年普拉德)圖21928年匹茲堡第七街區(qū)大橋除了20世紀(jì)20年代的匹茲堡橋,美國(guó)只有兩座自錨式懸索橋即1933年建成的跨度為69米和1939年建成的跨度為107米的兩座橋梁,它們分別橫跨密蘇里州小NIANGUA河印第安納州沃巴什河(1941年GRONQUIST)。除了20世紀(jì)20年代的匹茲堡橋,美國(guó)只有兩座自錨式懸索橋即1933年建成的跨度為69米和1939年建成的跨度為107米的兩座橋梁,它們分別橫跨密蘇里州小NIANGUA河印第安納州沃巴什河(1941年GRONQUIST)。20世紀(jì)30年代到40年代間德國(guó)工程師一直都在修建自錨式懸索橋,但戰(zhàn)后重建的橋梁則以斜拉橋?yàn)橹鳌?954年,德國(guó)工程師在德國(guó)杜伊斯堡建成了最后一個(gè)規(guī)模巨大的自錨式懸索橋,其跨度為230米(1990年普拉德)。1941年,由弗里茨萊昂哈特設(shè)計(jì)的跨度為378米的科隆羅登基興橋使用了常規(guī)錨定,超越了科隆米爾海姆大橋,成為歐洲最長(zhǎng)的懸索橋(1984B萊昂哈特)。萊昂哈特繼續(xù)設(shè)計(jì)更長(zhǎng)的懸掛跨度,而他付出的努力得到了回報(bào),最終在1961年作出一個(gè)在艾默里奇境內(nèi)的萊茵河口采用單面懸索橋的設(shè)計(jì)。雖然沒(méi)能建成,但萊茵哈特認(rèn)為這是他“最好設(shè)計(jì)”(1984B萊昂哈特)。三十年后,日本工程師于1990年成功地在日本大阪的此花大橋上重現(xiàn)了萊茵哈特單索面的想法?,F(xiàn)代自錨式橋梁大阪此花大橋于1990年建成,主跨為300米,是自1954年以來(lái)第一座用于交通營(yíng)運(yùn)的大型自錨式懸索橋,其創(chuàng)新設(shè)計(jì)之處在于考慮到了自錨的形式(圖4)。除了其自身錨定,此花大橋是第一座大型單索面懸索圖41990年日本此花大橋橋,其主纜和斜吊索沿行車道中心與單個(gè)垂直平面對(duì)齊。087噸每平方米(170呎)的自重小于300米跨度的典型橋梁,可等同于10至20萬(wàn)噸每平方米(200400呎)(1994年未發(fā)表的BUCHWALTER)。通過(guò)將垂度和跨度之比提高到16,其價(jià)值便高于最具可比性的懸索橋,設(shè)計(jì)師也可減小橋板上的軸向力。加勁梁高為317米,或?yàn)橹骺?/95,此時(shí)橋梁看起來(lái)很修長(zhǎng)。表1概述了此花大橋的常規(guī)尺寸數(shù)據(jù)(圖5為標(biāo)高圖)。表1此花大橋尺寸尺寸(1)值(2)主跨總懸跨垂度跨度梁厚梁寬梁厚主跨自重通行能力300M984FT540M1,7712FT16317M104FT265M869FT195087TONS/M2170PSF4車道圖5此花大橋標(biāo)高此花大橋的成功來(lái)自三個(gè)主要設(shè)計(jì)方面(1)架設(shè)方法;(2)斜吊索的使用;(3)鋼箱梁的使用。首先,預(yù)制梁有五大構(gòu)件且每個(gè)部分重達(dá)2700噸,故需要一個(gè)有效的施工方案。施工過(guò)程中,浮式起重機(jī)把這些部分吊裝到位,再用兩主跨之間的臨時(shí)支撐固定好它們(1992年嘉美等)。兩座索塔建成后,施工員使用預(yù)制的平行股索安裝主纜,從而避免了費(fèi)時(shí)的制索過(guò)程。第二個(gè)成功之處在于斜吊索,斜吊索的預(yù)拉伸避免了負(fù)載所引起的松弛現(xiàn)象。預(yù)拉伸也抬高了主梁,保了安裝過(guò)程中的精確控制。第三,倒梯形箱梁設(shè)有足夠的抗彎承
下載積分: 10 賞幣
上傳時(shí)間:2024-03-16
頁(yè)數(shù): 8
大?。?0.29(MB)
子文件數(shù):
-
簡(jiǎn)介:TIMEDEPENDENTBEHAVIOUROFCONCRETEBEAMSPRETENSIONEDBYCARBONFIBREREINFORCEDPOLYMERSCFRPTENDONSPATRICKXWZOUA,,SHOUPINGSHANGBAFACULTYOFTHEBUILTENVIRONMENT,UNIVERSITYOFNEWSOUTHWALES,THEREDCENTRE,ROOM3014,3RDFLOOR,SYDNEY,NSW,AUSTRALIABHUNANUNIVERSITY,CHANGSHA,CHINARECEIVED20JANUARY2005RECEIVEDINREVISEDFORM24MAY2006ACCEPTED19JUNE2006AVAILABLEONLINE22AUGUST2006ABSTRACTDUETOITSNONCORROSIVEANDHIGHTENSILESTRENGTHPROPERTIES,CARBONFIBREREINFORCEDPOLYMERSCFRPHASATTRACTEDRESEARCHERS’INTERESTSWORLDWIDETOINVESTIGATETHEFEASIBILITYANDEFFECTIVENESSOFUSINGCFRPASREINFORCEMENTSORPRESTRESSINGTENDONSINCONCRETESTRUCTURESHOWEVERUNTILNOWTHESESTUDIESHAVEBEENMAINLYINTHEFORMOFEXPERIMENTALTESTSANDTHEREISLACKOFTHEORETICALFRAMEWORKPROVIDEDTHISPAPERFIRSTPROPOSESANANALYTICALMETHODTOPREDICTTHETIMEDEPENDENTBEHAVIOUR,INCLUDINGCONCRETESTRAINS,CURVATUREANDDEFLECTIONASWELLASLOSSOFPRESTRESS,OFCONCRETEBEAMSPRESTRESSEDBYCFRPTENDONS,UNDERSUSTAINEDSERVICELOADCONDITIONTHEPAPERTHENPRESENTSTHREEILLUSTRATIVEEXAMPLESOFHOWTOUSETHISANALYTICALMETHODTOCALCULATETHETIMEDEPENDENTCONCRETESTRAINS,CURVATUREANDDEFLECTIONOFCONCRETEBEAMSPRETENSIONEDBYCFRPTENDONSITISCONCLUDEDTHATTHEPROPOSEDTHEORETICALFRAMEWORKISSUITABLEFORANALYSISOFTHETIMEDEPENDENTPERFORMANCEOFTHECONCRETEBEAMSPRETENSIONEDBYCFRPTENDONSANDTHEBEHAVIOUROFSUCHBEAMSARECOMPARABLETOTHOSEWITHSTEELANDTHEREFORECFRPCANBEEFFECTIVELYUSEDASPRESTRESSINGTENDONSINCONCRETEBEAMS?2006ELSEVIERLTDALLRIGHTSRESERVEDKEYWORDSCARBONFIBREREINFORCEDPOLYMERTENDONTIMEDEPENDENTBEHAVIOURCONCRETEBEAMSDEFLECTIONSTRAIN1INTRODUCTIONINPRESTRESSEDCONCRETEFLEXURALMEMBERSTHEPRESTRESSINGFORCEISAPPLIEDTOTHECONCRETEINORDERTOREDUCETHECURVATURE,THEDEFLECTIONANDTHEEXTENTOFCRACKINGOVERAPERIODOFTIMETHEPRESTRESSINGFORCEINTHEMEMBERWILLPROGRESSIVELYDECREASEDUETOCREEPANDSHRINKAGEOFTHECONCRETE,ASWELLASRELAXATIONOFTHETENDONS,IE,THELOSSOFPRESTRESSINCREASESWITHTIMETHELOSSOFPRESTRESSRESULTSINAGRADUALINCREASEINTHEDEFLECTIONSWHICHAFFECTSTHESERVICEABILITYOFTHEMEMBERIFFRPTENDONSARETOBEUSEDASALTERNATIVESTOSTEELTENDONSINPRESTRESSEDCONCRETE,ITISIMPORTANTTOUNDERSTANDTHEIMPLICATIONSANDEFFECTSONTHETIMEDEPENDENTSTRUCTURALBEHAVIOURTHEMATERIALPROPERTIESOFTHETENDONSTHATMOSTAFFECTTHESERVICEABILITYPERFORMANCEOFPRESTRESSEDSTRUCTURESARETHEELASTICMODULUSEPANDTHEFINALPERCENTAGERELAXATIONRORCREEPCOEFFICIENT,/PSOMEFRPTENDONSMAYRELAXORCREEPMORETHANPRESTRESSINGSTEELTENDONSANDTHEELASTICMODULUSMAYBESUBSTANTIALLYLOWERTHANTHATOFSTEELHIGHERCREEPINTHETENDONSRESULTSINAGREATERLOSSOFPRESTRESSDUETORELAXATION,WHILSTALOWERELASTICMODULUSMEANSTHATTHETIMEDEPENDENTDEFORMATIONSOFTHECONCRETEDUETOCREEPANDSHRINKAGECAUSELESSLOSSOFPRESTRESSITMAYBENOTEDATTHISPOINTTHATTHISPAPERWILLFOCUSONCARBONFIBREREINFORCEDPOLYMERSCFRPDUEITSSUPERIORPROPERTIESINTERMSOFLOWCREEPRELAXATIONANDHIGHTENSILESTRENGTHASWELLASMODERATEDELASTICMODULUSHOWEVERTHEMETHODPRESENTEDINTHISPAPERISAPPLICABLETOALLTYPESOFFRPTENDONSMANYRESEARCHERSHAVEPROVIDEDEXPERIMENTALRESULTSINDICATINGTHATFRPINFACTCOULDBEANEFFECTIVEALTERNATIVETOSTEELFORPRESTRESSINGCONCRETEBEAMS11,1,2,8,13–15,6ATSERVICELOADLEVELASWELLASATULTIMATELIMITEDSTATEHOWEVERTHEREISAGAPINPROVIDINGSOUNDTHEORETICAL09500618/SEEFRONTMATTER?2006ELSEVIERLTDALLRIGHTSRESERVEDDOI101016/JCONBUILDMAT200606008CORRESPONDINGAUTHORTEL612938555236EMAILADDRESSPZOUUNSWEDUAUPXWZOUWWWELSEVIERCOM/LOCATE/CONBUILDMATCONSTRUCTIONANDBUILDINGMATERIALS212007777–788CONSTRUCTIONANDBUILDINGMATERIALSNI??PID7TMI?MS?PIDPD8TTHEINITIALCONCRETESTRAINANDSTRESSATYBELOWTHETOPFIBREAREEI?E0ITYJID9TRI?ECEI?ECDE0ITYJITD10TTHECORRESPONDINGSTRESSESINTHETENDONSANDTHEREINFORCEMENTCANBEDETERMINEDUSINGTHELINEARMATERIALPROPERTIESFORFRPPRESTRESSINGTENDONORREINFORCEMENT23SHORTTERMANALYSISOFACRACKEDPRETENSIONEDSECTIONATANYTIMET,IFTHEAPPLIEDMOMENTATASECTIONISGREATERTHANTHECRACKINGMOMENT,CRACKINGWILLOCCURANDATEACHCRACKTHECONCRETEBELOWTHENEUTRALAXISISINEFFECTIVETHESHORTTERMBEHAVIOUROFTHECRACKEDCROSSSECTIONMAYBECALCULATEDUSINGASIMPLEELASTICANALYSISWITHTHEFOLLOWINGTHREEASSUMPTIONS1PLANESECTIONSREMAINPLANEANDTHEREFORETHESTRAINDISTRIBUTIONISLINEAROVERTHEDEPTHOFTHESECTION2PERFECTBONDEXISTSBETWEENTHECONCRETEANDFRPTENDONSANDREINFORCEMENTS3INSTANTANEOUSMATERIALBEHAVIOURISLINEARELASTICFORCONCRETEANDFRPTHEINSTANTANEOUSSTRAINSANDSTRESSESONACRACKEDSECTIONARESHOWNINFIG3THEHORIZONTALEQUILIBRIUMANDMOMENTEQUILIBRIUMCANBEUSEDINTHECROSSSECTIONTOFINDTHECONCRETESTRAINATTOPFIBREE0IANDTHEDEPTHOFNEUTRALAXISDN,THATISTPTTSTCTCS?0D11TMS?TPDPTTSDS2TCDZTCSDS1D12TWHEREC,CS,TSANDTPMAYBEEXPRESSEDASFUNCTIONSOFDNANDE0I,ASFOLLOWSC?12ECE0IBDND13TCS?ES1AS1?E0IDDN?DS1TDND14TTS?ES2AS2?E0IDDS2?DNTDND15TTP?EPAPEPETJECEJT?E0IDDP?DNTDN??D16TWHEREEPE?PEAPEPD17TECE?1EC?PEAG?PEE2IG??D18TBYATRIALANDERRORPROCEDURE,THEDEPTHOFNEUTRALAXISDNANDTHESTRAINATTOPFIBREE0ICANBEFOUNDHENCETHECURVATUREJICANBEDETERMINEDJI??E0IDND19TAFTERDNISDETERMINED,THEPROPERTIESOFTHEFULLYCRACKEDTRANSFORMEDSECTIONWITHRESPECTTOTHETOPREFERENCESURFACEA,BANDIMAYBECALCULATEDANDTHESHORTTERMSTRAINATTHETOPFIBRE,THECURVATUREANDHENCETHEDISTRIBUTIONMAYBEFOUNDBYEQS5AND6,RESPECTIVELYFURTHERMORE,WHENDNANDE0IAREKNOWN,THESTRAINSANDSTRESSINTHETENDONSORREINFORCEMENTSAREALSOREADILYDETERMINED24TIMEDEPENDENTANALYSISOFCROSSSECTIONINPRETENSIONEDCONCRETEBEAMS,THEBONDEDTENDONSANDREINFORCEMENTPROVIDERESTRAINTTOTHETIMEDEPENDENTSHORTENINGOFCONCRETECAUSEDBYCREEPANDSHRINKAGETHETENDONANDREINFORCEMENTAREGRADUALLYCOMPRESSEDEQUALANDOPPOSITETENSILEFORCESAREAPPLIEDTOTHECONCRETEATEACHLEVELOFTHEBONDEDTENDONANDREINFORCEMENT,THEREBYREDUCINGTHECOMPRESSIONCAUSEDBYPRESTRESSITISTHETENSILEFORCESAPPLIEDGRADUALLYATEACHLEVELOFBONDEDREINFORCEMENTTHATRESULTINSIGNIFICANTTIMEDEPENDENTCHANGESINCURVATUREANDDEFLECTION10THESUMOFTHETIMEDEPENDENTCHANGEOFSTRAINATANYDEPTHYBELOWTHETOPFIBREOFTHECROSSSECTIONDEMAYBEEXPRESSEDINTERMSOFTHECHANGEINTHETOPFIBRESTRAINDE0ANDTHECHANGEOFCURVATUREDJDE?DE0TYDJD20TTHETIMEANALYSISOFTHECROSSSECTIONCONSIDEREDHEREUSESTHEAGEADJUSTEDEFFECTIVEMODULUSMETHODAEMMTOGETHERWITHARELAXATIONAPPROACHTHEAPPLICATIONWASPROPOSEDBYGILBERT9INTHERELAXATIONPROCEDURE,THESTRAINSTATEISASSUMEDTOBEHELDCONSTANTTHROUGHOUTAGIVENTIMEINTERVALIFTHETOTALSTRAINISHELDCONSTANTANDTHEDBAS1APAS2CS1TPΣCISTRAINATDIFFERENTAGESCROSSSECTIONSTRESSESANDSTRESSRESULTANTSAFTERLOADINGATT0TRANSFERATT1BEFORELOADINGATT1AFTERLOADINGTS2CCΣPΣS1ΣS2DNΕ0IFIG3DISTRIBUTIONOFSTRAINANDSTRESSOFACRACKEDSECTIONPXWZOU,SSHANG/CONSTRUCTIONANDBUILDINGMATERIALS212007777–788779
下載積分: 10 賞幣
上傳時(shí)間:2024-03-13
頁(yè)數(shù): 12
大小: 0.27(MB)
子文件數(shù):
-
簡(jiǎn)介:中文中文13萬(wàn)字萬(wàn)字出處出處CASASJRRELIABILITYBASEDASSESSMENTOFMASONRYARCHBRIDGESJCONSTRUCTIONBUILDINGMATERIALS,2011,25416211631畢業(yè)設(shè)計(jì)(論文)資料附件畢業(yè)設(shè)計(jì)(論文)資料附件外文文獻(xiàn)原文及譯文外文文獻(xiàn)原文及譯文學(xué)生姓名學(xué)生姓名學(xué)號(hào)號(hào)班級(jí)橋梁工程橋梁工程專業(yè)業(yè)橋梁工程橋梁工程指導(dǎo)教師指導(dǎo)教師2014年4月橋的疲勞壽命的影響?,F(xiàn)在存在著幾個(gè)經(jīng)驗(yàn)公式和數(shù)值方法來(lái)確定圬工拱的承載能力MEXE法,最大應(yīng)力分析法,極限分析(機(jī)理)法1–3,固體力學(xué)方法(卡氏非線性分析,有限元分析,離散元素分析)。這些方法也存在于很多以計(jì)算機(jī)為基礎(chǔ)的應(yīng)用程序中ARCHIEM,RING,DIANA。近日,有人在研究圬工長(zhǎng)期性能的反復(fù)荷載作用5,6提出在正常使用情況下,循環(huán)荷載作用下疲勞失效的可能性遠(yuǎn)低于極限荷載4反復(fù)作用下的一種新的方法來(lái)分析圬工拱,存在著這種可能性。分析圬工拱可用的方法在本質(zhì)上是確定的。所以在參與作答的所有變量都被假定為確定值的情況下他們可以預(yù)測(cè)極限承載力,但是由于涉及幾何形狀,材料和加載的不確定性使得這可能顯示的并不是真實(shí)的情況。最近幾年橋梁結(jié)構(gòu)的可靠性評(píng)估已成功落實(shí)和執(zhí)行。這些方法假定所涉及的變量在本質(zhì)上具有不確定性。在混凝土(鋼筋混凝土和預(yù)應(yīng)力)結(jié)構(gòu)橋梁或鋼結(jié)構(gòu)領(lǐng)域都有了大量的經(jīng)驗(yàn)。一些經(jīng)驗(yàn)表明,通過(guò)高效,準(zhǔn)確的基于概率的評(píng)估方法712可以節(jié)約大量的金錢(qián)。然而,這種方法幾乎很少應(yīng)用到圬工拱橋中。其中一個(gè)原因是很難定義這種類型結(jié)構(gòu)的可靠失效準(zhǔn)則。另一個(gè)原因是缺乏磚石和填充材料的材料特性的統(tǒng)計(jì)數(shù)據(jù)。實(shí)驗(yàn)測(cè)試表明,一個(gè)拱的失效通常是因整體的破壞而不是因橋梁一個(gè)構(gòu)件的故障。所以在大多數(shù)的情況下,橋梁分裂成不同的構(gòu)件的這種可能性是不存在的。由于這個(gè)原因和缺乏準(zhǔn)確的理論模型,所以我們把圬工拱橋理想化的特性作為一個(gè)系統(tǒng),包括互動(dòng)效應(yīng),填充料,拱肩墻等,這又是另一個(gè)尚未克服的難點(diǎn)。最后,由于缺乏可靠的統(tǒng)計(jì)數(shù)據(jù)對(duì)材料性能的定義也成了一個(gè)問(wèn)題,這個(gè)問(wèn)題限制了基本概率的評(píng)估技術(shù)的使用。在靜載荷作用下圬工可以利用的數(shù)據(jù)特性很少。更戲劇性的是在循環(huán)載荷作用下實(shí)驗(yàn)數(shù)據(jù)的極度匱乏。所以從砌體強(qiáng)度測(cè)量值估計(jì)可能比現(xiàn)有結(jié)構(gòu)評(píng)估13,14要好,而這已被視為關(guān)鍵問(wèn)題之一。然而,一些經(jīng)驗(yàn)證明基于可靠性的評(píng)估方法在砌體結(jié)構(gòu)彎曲和壓縮1518時(shí)的能力評(píng)估中具有潛力。例如,在19中對(duì)按中國(guó)標(biāo)準(zhǔn)設(shè)計(jì)的典型的鋼筋灌漿混凝土砌體墻的結(jié)構(gòu)的可靠性進(jìn)行了評(píng)價(jià)。在圬工拱的特殊情況中,可以利用精確橋梁模型應(yīng)用概率評(píng)估的情況很少。在文獻(xiàn)20中,可靠性分析和非線性模型的磚石拱橋提出使用隱式極限狀態(tài)函數(shù),這提出一種敏感性分析法。在某些情況下,當(dāng)使用標(biāo)準(zhǔn)方法評(píng)估線性模型時(shí),
下載積分: 10 賞幣
上傳時(shí)間:2024-03-16
頁(yè)數(shù): 29
大?。?0.44(MB)
子文件數(shù):
-
簡(jiǎn)介:ENGINEERINGSTRUCTURES2720051715–1725WWWELSEVIERCOM/LOCATE/ENGSTRUCTTECHNOLOGYDEVELOPMENTSINSTRUCTURALHEALTHMONITORINGOFLARGESCALEBRIDGESJMKO?,YQNIDEPARTMENTOFCIVILANDSTRUCTURALENGINEERING,THEHONGKONGPOLYTECHNICUNIVERSITY,HUNGHOM,KOWLOON,HONGKONGAVAILABLEONLINE14JULY2005ABSTRACTTHESIGNIFICANCEOFIMPLEMENTINGLONGTERMSTRUCTURALHEALTHMONITORINGSYSTEMSFORLARGESCALEBRIDGES,INORDERTOSECURESTRUCTURALANDOPERATIONALSAFETYANDISSUEEARLYWARNINGSONDAMAGEORDETERIORATIONPRIORTOCOSTLYREPAIROREVENCATASTROPHICCOLLAPSE,HASBEENRECOGNIZEDBYBRIDGEADMINISTRATIVEAUTHORITIESDEVELOPINGALONGTERMMONITORINGSYSTEMFORALARGESCALEBRIDGEONETHATISREALLYABLETOPROVIDEINFORMATIONFOREVALUATINGSTRUCTURALINTEGRITY,DURABILITYANDRELIABILITYTHROUGHOUTTHEBRIDGELIFECYCLEANDENSURINGOPTIMALMAINTENANCEPLANNINGANDSAFEBRIDGEOPERATIONPOSESTECHNOLOGICALCHALLENGESATDIFFERENTLEVELS,FROMTHESELECTIONOFPROPERSENSORSTOTHEDESIGNOFASTRUCTURALHEALTHEVALUATIONSYSTEMTHISPAPEREXPLORESRECENTTECHNOLOGYDEVELOPMENTSINTHEFIELDOFSTRUCTURALHEALTHMONITORINGANDTHEIRAPPLICATIONTOLARGESCALEBRIDGEPROJECTSTHENEEDFORTECHNOLOGICALFUSIONFROMDIFFERENTDISCIPLINES,ANDFORASTRUCTURALHEALTHEVALUATIONPARADIGMTHATISREALLYABLETOHELPPRIORITIZEBRIDGEREHABILITATION,MAINTENANCEANDEMERGENCYREPAIR,ISHIGHLIGHTED?2005ELSEVIERLTDALLRIGHTSRESERVEDKEYWORDSLARGESCALEBRIDGESTRUCTURALHEALTHMONITORINGSHMINSTRUMENTATIONSYSTEMDAMAGEDETECTIONBRIDGEMAINTENANCE1INTRODUCTIONTHEDEVELOPMENTOFSTRUCTURALHEALTHMONITORINGTECHNOLOGYFORSURVEILLANCE,EVALUATIONANDASSESSMENTOFEXISTINGORNEWLYBUILTBRIDGESHASNOWATTAINEDSOMEDEGREEOFMATURITYONSTRUCTURELONGTERMMONITORINGSYSTEMSHAVEBEENIMPLEMENTEDONBRIDGESINEUROPE1–4,THEUNITEDSTATES5,6,CANADA7,8,JAPAN9,10,KOREA11,12,CHINA13–15ANDOTHERCOUNTRIES16–18BRIDGESTRUCTURALHEALTHMONITORINGSYSTEMSAREGENERALLYENVISAGEDTOIVALIDATEDESIGNASSUMPTIONSANDPARAMETERSWITHTHEPOTENTIALBENEFITOFIMPROVINGDESIGNSPECIFICATIONSANDGUIDELINESFORFUTURESIMILARSTRUCTURESIIDETECTANOMALIESINLOADINGANDRESPONSE,ANDPOSSIBLEDAMAGE/DETERIORATIONATANEARLYSTAGETOENSURESTRUCTURALANDOPERATIONALSAFETYIIIPROVIDEREALTIMEINFORMATIONFORSAFETYASSESSMENTIMMEDIATELYAFTERDISASTERSANDEXTREMEEVENTSIVPROVIDEEVIDENCEANDINSTRUCTIONFORPLANNINGANDPRIORITIZINGBRIDGE?CORRESPONDINGAUTHORTEL85227665037FAX85227661354EMAILADDRESSCEJMKOINETPOLYUEDUHKJMKO01410296/SEEFRONTMATTER?2005ELSEVIERLTDALLRIGHTSRESERVEDDOI101016/JENGSTRUCT200502021INSPECTION,REHABILITATION,MAINTENANCEANDREPAIRVMONITORREPAIRSANDRECONSTRUCTIONWITHTHEVIEWOFEVALUATINGTHEEFFECTIVENESSOFMAINTENANCE,RETROFITANDREPAIRWORKSANDVIOBTAINMASSIVEAMOUNTSOFINSITUDATAFORLEADINGEDGERESEARCHINBRIDGEENGINEERING,SUCHASWINDANDEARTHQUAKERESISTANTDESIGNS,NEWSTRUCTURALTYPESANDSMARTMATERIALAPPLICATIONSTHEDEVELOPMENTANDIMPLEMENTATIONOFASTRUCTURALHEALTHMONITORINGSYSTEMCAPABLEOFFULLYACHIEVINGTHEABOVEOBJECTIVESANDBENEFITSISSTILLACHALLENGEATPRESENT,ANDNEEDSWELLCOORDINATEDINTERDISCIPLINARYRESEARCHFORFULLADAPTATIONOFINNOVATIVETECHNOLOGIESDEVELOPEDINOTHERDISCIPLINESTOAPPLICATIONSINTHECIVILENGINEERINGCOMMUNITYACTUALLY,STRUCTURALHEALTHMONITORINGHASBEENASUBJECTOFMAJORINTERNATIONALRESEARCHINRECENTYEARS19–21THERESEARCHINTHISSUBJECTCOVERSSENSING,COMMUNICATION,SIGNALPROCESSING,DATAMANAGEMENT,SYSTEMIDENTIFICATION,INFORMATIONTECHNOLOGY,ETCITREQUIRESCOLLABORATIONBETWEENCIVIL,MECHANICAL,ELECTRICALANDCOMPUTERENGINEERINGAMONGOTHERSTHECURRENTCHALLENGESFORBRIDGESTRUCTURALHEALTHMONITORINGJMKO,YQNI/ENGINEERINGSTRUCTURES2720051715–17251717TABLE1MAJORBRIDGESINCHINAINSTRUMENTEDWITHLONGTERMMONITORINGSYSTEMSNOBRIDGENAMEBRIDGETYPELOCATIONMAINSPANMSENSORSINSTALLED1JIANGYINBRIDGEAFTERUPGRADE28SUSPENSIONJIANGSU13851,2,3,4,5,6,9,10,1321STNANJINGYANGTZERIVERBRIDGE29STEELTRUSSJIANGSU1601,2,3,4,5,7,1432NDNANJINGYANGTZERIVERBRIDGE30CABLESTAYEDJIANGSU6281,2,3,4,7,9,13,164RUNYANGSOUTHBRIDGE31SUSPENSIONJIANGSU14901,2,3,4,65RUNYANGNORTHBRIDGE31CABLESTAYEDJIANGSU4061,2,3,46SUTONGBRIDGE32CABLESTAYEDJIANGSU10881,2,3,4,5,6,7,8,9,10,11,16,187TSINGMABRIDGE15SUSPENSIONHONGKONG13771,2,3,4,5,6,7,12,188KAPSHUIMUNBRIDGE15CABLESTAYEDHONGKONG4301,2,3,4,5,6,7,12,189TINGKAUBRIDGE15CABLESTAYEDHONGKONG4751,2,3,4,5,6,7,12,1810SHENZHENWESTERNCORRIDOR15CABLESTAYEDHONGKONG2101,2,3,4,5,7,8,15,16,17,1811STONECUTTERSBRIDGE15CABLESTAYEDHONGKONG10181,2,3,4,5,6,7,8,9,10,11,15,16,17,1812TONGLINGYANGTZERIVERBRIDGE33CABLESTAYEDANHUI4321,2,4,11,1313WUHUBRIDGE34CABLESTAYEDANHUI3122,3,4,5,10,1214HUMENBRIDGE35SUSPENSIONGUANGDONG8883,6,11,1215ZHANJIANGBAYBRIDGE6CABLESTAYEDGUANGDONG4801,2,3,5,6,9,11,14,1616XUPUBRIDGE36CABLESTAYEDSHANGHAI5902,3,4,7,1217LUPUBRIDGE37ARCHSHANGHAI5502,3,4,1218DAFOSIBRIDGE38CABLESTAYEDCHONGQING4502,3,4,5,10,1219BINZHOUYELLOWRIVERBRIDGE14CABLESTAYEDSHANDONG3001,2,3,4,6,10204THQIANJIANGBRIDGE39ARCHZHEJIANG5801,2,3,4,9,13NOTE1ANEMOMETERS2TEMPERATURESENSORS3STRAINGAUGES4ACCELEROMETERS5DISPLACEMENTTRANSDUCERS6GLOBALPOSITIONINGSYSTEMS7WEIGHINMOTIONSYSTEMS8CORROSIONSENSORS9ELASTOMAGNETICSENSORS10OPTICFIBERSENSORS11TILTMETERS12LEVELSENSORS13TOTALSTATIONS14SEISMOMETERS15BAROMETERS16HYGROMETERS17PLUVIOMETERS18VIDEOCAMERASMONITORINGOFLARGESCALEBRIDGESFIG1ILLUSTRATESSUCHANAPPLICATIONWHEREFIBEROPTICSENSORSAREDEPLOYEDALONGTHEDECKLENGTHOFTHESUSPENSIONJIANGYINBRIDGEFORBOTHSTRAINANDTEMPERATUREMEASUREMENTTHEMOSTATTRACTIVEFEATUREOFFIBEROPTICSENSORSISTHEIRCAPABILITYOFDISTRIBUTEDSENSINGANDMEASUREMENTWHICHWILLRESULTINELABORATECONDITIONMONITORINGFORLARGESCALEBRIDGESTHEEXISTENTMAINOBSTACLETOWIDEACCEPTANCEOFFIBEROPTICSENSORSFORBRIDGEMONITORINGAPPLICATIONISTHELACKOFENGINEERINGDEMONSTRATIONOFTHEDURABILITYOFTHESENSORSINAHARSHENVIRONMENTANDLONGTERMPERFORMANCEOFTHEIRATTACHMENTTOCONSTRUCTIONMATERIALSANOTHERPROMISINGAPPLICATIONOFFIBEROPTICSENSORSFORCABLESUPPORTEDBRIDGESISTHEEMBEDMENTOFSENSORSINSIDETHEBRIDGECABLESFORBOTHTEMPERATUREANDSTRAINMEASUREMENTANINTERDISCIPLINARYRESEARCHTEAMINHONGKONGPOLYTECHNICUNIVERSITYHASDEVISEDSUCHAFIBEROPTICSENSINGSYSTEMFORTHECABLESTAYEDSUTONGBRIDGEINTHISDESIGNSHOWNINFIG2,SEVENOUTOFTHEWIRESCOMPOSINGTHECABLECROSSSECTIONHAVEBEENREPLACEDBYSTAINLESSSTEELTUBESFORTHEDEPLOYMENTOFFIBEROPTICSENSORSOPTICFIBERSINTERMSOFTHEBRILLOUINSCATTERINGSENSORSARELAID‘STRAINFREE’INSIDEEACHSTEELTUBEFORDISTRIBUTEDTEMPERATUREMEASUREMENTALONGTHECABLELENGTHTHETECHNOLOGYOFBRILLOUINOPTICALTIMEDOMAINREFLECTOMETRYBOTDRISUSED,BYWHICHALASERPULSEISLAUNCHEDINTOTHEOPTICFIBERTHATSERVESASTHESENSINGELEMENTANDTHETEMPERATUREMEASUREMENTISACHIEVEDBYCOMBININGTHESCATTERINGINFORMATIONWITHPROPAGATIONTIMEOFTHELASERPULSESALONGTHEFIBERITISNOTEDTHATSEVENGALVANIZEDWIRESHAVEBEENADDEDATTHEOUTERMOSTOFTHECABLECROSSSECTIONTOKEEPTHETOTALAREAOFTHEWIRESUNALTEREDMEANWHILE,FIBERBRAGGGRATINGFBGSENSORSAREEMBEDDEDINTHECABLEENDSFORSTRAINMEASUREMENTTHESTRAINOFTHECABLENEARITSANCHORAGESISMEASUREDWITHFBGARRAYSEPOXIEDONTOTHEOUTSIDESURFACEOFTHESTEELTUBES,ASSHOWNINFIG2THEFBGARRAYSCONSISTOFTHREEFBGSTRAINSENSORSSPACED2MAPARTTHEFBGSARESENSITIVETOBOTHSTRAINANDTEMPERATURETHETEMPERATUREOFTHEFBGSISOBTAINEDFROMTHEBOTDRSYSTEM,ANDTHEREFORETHESTRAINAPPLIEDTOTHEFBGSCANBEDETERMINEDBECAUSETHEFBGARRAYSAREINSTALLEDALONGTHESTEELTUBESWHICHAREUSEDTOACCOMMODATEBOTDRFORTEMPERATUREMEASUREMENT,EXTRASTEELTUBESANDWIREAREAREDUCTIONAREESCHEWED
下載積分: 10 賞幣
上傳時(shí)間:2024-03-13
頁(yè)數(shù): 11
大小: 2.66(MB)
子文件數(shù):
-
簡(jiǎn)介:中文中文7150字,字,4400單詞,單詞,22萬(wàn)英文字符萬(wàn)英文字符出處出處KWASNIEWSKIL,LIH,WEKEZERJ,ETALFINITEELEMENTANALYSISOFVEHICLE–BRIDGEINTERACTIONJFINITEELEMENTSINANALYSISDESIGN,2016,4211950959車橋耦合作用的有限元分析LESLAWKWASNIEWSKI,HONGYILI,JERRYWEKEZER,JERZYMALACHOWSKI摘要本文介紹了美國(guó)佛羅里達(dá)州的一座公路橋梁在與重型卡車發(fā)生耦合作用時(shí),對(duì)其動(dòng)力特性采用有限元分析的結(jié)果。有限元車橋耦合作用的分析是利用商業(yè)程序LSDYNA和佛羅里達(dá)州立大學(xué)的超級(jí)計(jì)算機(jī)實(shí)現(xiàn)的。綜合考慮氣動(dòng)、車輪的旋轉(zhuǎn)以及適當(dāng)?shù)慕佑|算法,制定和實(shí)現(xiàn)了精細(xì)的卡車有限元三維懸掛系統(tǒng),對(duì)實(shí)際行車時(shí)的動(dòng)態(tài)加載效果進(jìn)行了非常逼真的模擬。并在同一座橋梁上進(jìn)行了各種靜態(tài)、動(dòng)態(tài)的現(xiàn)場(chǎng)力學(xué)試驗(yàn)。所得到的實(shí)驗(yàn)數(shù)據(jù)用于車橋有限元模型的驗(yàn)證。根據(jù)大量實(shí)驗(yàn)數(shù)據(jù)可以發(fā)現(xiàn)利用有限元模擬系統(tǒng)進(jìn)行實(shí)驗(yàn)分析是真實(shí)可靠的。實(shí)驗(yàn)提交的文件體現(xiàn)出利用計(jì)算力學(xué)和LSDYNA程序?qū)嚇蝰詈献饔谩?dòng)力影響因素以及橋梁極限載荷進(jìn)行深入、詳細(xì)調(diào)查的顯著潛力。關(guān)鍵詞車橋耦合作用;影響因素;橋梁動(dòng)態(tài);有限元分析;計(jì)算機(jī)模擬;LSDYNA11介紹非線性有限元(FE)方法現(xiàn)今常用來(lái)解決工程問(wèn)題。像這樣的一個(gè)工程領(lǐng)域是公路設(shè)施的管理的有效方法,尤其在橋梁領(lǐng)域,包括動(dòng)態(tài)負(fù)載的實(shí)際效應(yīng),承載能力,以及橋梁使用狀況等,這是作出管理決策和制定載重限制所需的至關(guān)重要的知識(shí)?,F(xiàn)在我們的高速公路上使用的車輛荷載日益加重,這可以引起橋梁顯著的動(dòng)態(tài)效應(yīng)。在橋梁設(shè)計(jì)規(guī)范里,附加動(dòng)態(tài)荷載亦是影響橋梁動(dòng)態(tài)的重要因素。影響因數(shù)IM,也被稱為動(dòng)態(tài)荷載系數(shù),它被定義為一個(gè)動(dòng)態(tài)增量比,即結(jié)構(gòu)對(duì)動(dòng)載的反應(yīng)RD?RS與靜態(tài)響應(yīng)系數(shù)的比值。其中RD是動(dòng)態(tài)響應(yīng)系數(shù),RS是靜態(tài)相應(yīng)系數(shù)。關(guān)于這個(gè)課題人們做了大量的研究,包括實(shí)驗(yàn)影響因素、分析方法和程序規(guī)范。例如NOWAK和KIM在兩座跨越HURONRIVER的大橋上進(jìn)行了測(cè)試,以研究影響因素、分布因素和橋面裂縫的橫向發(fā)展。CHOWDHURY和RAY分別在一個(gè)連續(xù)梁橋單跨、鋼構(gòu)橋、和單跨度鋼筋混凝土T型梁橋上進(jìn)行了一系列的負(fù)載測(cè)試,以量化在汽車活載下橋梁的物理性能和結(jié)構(gòu)變化。GREEN和CEBON也選擇了一座橫跨LOWEREARLEY的LODDEN河的雙車道公路橋進(jìn)行試驗(yàn),以驗(yàn)證他們提出的分析方法。當(dāng)然,還有更多像這樣的實(shí)驗(yàn)研究實(shí)例。這些試驗(yàn)表明,根據(jù)橋梁和車輛的不同參數(shù),橋梁表現(xiàn)出廣泛的結(jié)構(gòu)和動(dòng)力響應(yīng)以及由此產(chǎn)生的其他影響?,F(xiàn)場(chǎng)試驗(yàn)始終是獲取橋梁對(duì)動(dòng)載響應(yīng)的相關(guān)信息的最可靠的來(lái)源,也是最終驗(yàn)證有限元分析理論的唯一方法。不過(guò),這種試驗(yàn)費(fèi)用很高并且從現(xiàn)場(chǎng)試驗(yàn)獲取全面的數(shù)據(jù)存在困難,這便導(dǎo)致了人們把更多的興趣放在了理論分析及計(jì)算方法上。一個(gè)可靠的分析研究可以大幅減少試驗(yàn)費(fèi)用并可以幫助更快的做出新的設(shè)計(jì)改進(jìn)和維修決策。橋梁動(dòng)力響應(yīng)的調(diào)查分析是在對(duì)它的幾何形狀,材料模型,邊界條件和載荷進(jìn)行很大的簡(jiǎn)化的基礎(chǔ)上進(jìn)行的。在分析時(shí),車輛和橋梁結(jié)構(gòu)的耦合作用常常被簡(jiǎn)化為一個(gè)橫跨過(guò)梁或板的精簡(jiǎn)的大規(guī)模彈簧阻尼系統(tǒng),并將路面平整度考慮在內(nèi)7–12。當(dāng)前橋梁設(shè)計(jì)規(guī)范提出了一些估算動(dòng)態(tài)影響的公式。但是這些公式過(guò)于簡(jiǎn)單化并且在許多情況下都受到工程師的質(zhì)疑。本試驗(yàn)采用一個(gè)由準(zhǔn)確的,動(dòng)態(tài)的計(jì)算機(jī)程序所做的有限元分析,研究中跨(2030M長(zhǎng))公路橋梁對(duì)動(dòng)態(tài)車輛荷載的反應(yīng)情況。該文介紹了針對(duì)所選城市公路橋梁車橋有限元模型的開(kāi)發(fā)所做的全面的研究工作、車橋耦合作用的計(jì)算力學(xué)研究
下載積分: 10 賞幣
上傳時(shí)間:2024-03-16
頁(yè)數(shù): 19
大?。?1(MB)
子文件數(shù):
-
簡(jiǎn)介:7100漢字,漢字,5000單詞,單詞,26萬(wàn)英文字符萬(wàn)英文字符出處出處MORGENTHALG,SHAMR,WESTBENGINEERINGTHETOWERANDMAINSPANCONSTRUCTIONOFSTONECUTTERSBRIDGEJJOURNALOFBRIDGEENGINEERING,2010,152144152昂船洲大橋的主塔、主梁結(jié)構(gòu)施工介紹昂船洲大橋的主塔、主梁結(jié)構(gòu)施工介紹GUIDOMORGENTHALROBINSHAMANDBRIANWEST摘要摘要昂船洲大橋具有第一大雙箱梁上部結(jié)構(gòu),同時(shí)也是世界上第二長(zhǎng)的斜拉橋,。它特有的一些的結(jié)構(gòu)特點(diǎn),使得橋梁施工成為一大挑戰(zhàn)。本文詳細(xì)介紹了此橋橋塔及上部結(jié)構(gòu)的設(shè)計(jì)和施工工程。一個(gè)安全和有效的施工必須建立在施工方和監(jiān)控方之間的密切合作的基礎(chǔ)上。詳細(xì)模擬,分析施工過(guò)程中的每一個(gè)步驟,考慮其對(duì)施工階段及成橋狀態(tài)耐久性能的影響。同時(shí)廣泛的運(yùn)用風(fēng)洞實(shí)驗(yàn)和數(shù)字分析的方法來(lái)檢驗(yàn)風(fēng)荷載對(duì)結(jié)構(gòu)的影響,進(jìn)而全面而細(xì)致的控制所有施工過(guò)程中產(chǎn)生的變形。本文介紹了其特殊的施工方法和相關(guān)的工程投入。概述了怎樣通過(guò)研究一個(gè)有效的施工步驟而保證整個(gè)橋梁施工過(guò)程結(jié)構(gòu)的安全性和抗風(fēng)性能,同時(shí)完美的控制了整個(gè)橋梁的變形。CE數(shù)據(jù)庫(kù)標(biāo)題橋梁,斜拉橋,混凝土,結(jié)構(gòu),鋼材,幾何控制,主塔,香港文章關(guān)鍵詞文章關(guān)鍵詞斜拉橋,施工分析,混凝土結(jié)構(gòu),鋼結(jié)構(gòu),臨時(shí)工程,變形控制簡(jiǎn)介簡(jiǎn)介現(xiàn)已完工的昂船洲大橋的具有一些獨(dú)特的設(shè)計(jì)特點(diǎn),主跨超過(guò)1000米成功打破了世界記錄成為第二大斜拉橋并且成為了香港代表性大跨徑橋梁之一。它作為西九龍鏈接到大嶼山機(jī)場(chǎng)的8號(hào)干線中一部分,跨越藍(lán)巴勒海峽將西九龍的昂船洲與青衣島連接起來(lái),將進(jìn)一步促進(jìn)新界沙田的發(fā)展。昂船洲大橋,是一個(gè)具有1018米長(zhǎng)的主跨和298米高的主塔的高等級(jí)的斜拉橋(圖一),橋塔為圓錐形獨(dú)柱式(圖二),主跨主梁為流線型分離式雙箱梁(圖三),梁通過(guò)橫隔梁的豎直鏈接而成為整體(圖四)。邊跨為單片混凝土結(jié)構(gòu),跨度約為70米。主跨伸延至邊跨約50M長(zhǎng)的部分為鋼箱梁結(jié)構(gòu)。錨固在主塔上端的828行平行鋼絞線(PWS)的纜索來(lái)支撐著整個(gè)橋面。前田日立橫河新昌聯(lián)營(yíng)(合資公司)于2004年4月獲得橋梁建設(shè)合同。,合資公司獲得合同后任命茂盛為顧問(wèn),為整個(gè)建設(shè)保駕護(hù)航,因?yàn)槊⒐驹谇捌跍?zhǔn)備工作中給予合資公司許多幫助斜拉橋的主跨和主塔的施工一直都是一個(gè)難題。中國(guó)大陸制造的鋼結(jié)構(gòu)必須要有嚴(yán)格的控制和監(jiān)督。在現(xiàn)場(chǎng)施工中需要?jiǎng)?chuàng)新的施工方案和先進(jìn)的技術(shù)來(lái)解決出現(xiàn)的種種困難。在施工過(guò)程中JV公司和MWUNSELL公司進(jìn)行了深入的交流,對(duì)整個(gè)施工過(guò)程進(jìn)行了全面的分析,來(lái)嚴(yán)格保證每個(gè)施工階段和整體橋梁都具有足夠的持久性能和承受能力。制定了一個(gè)綜合的大型風(fēng)洞實(shí)驗(yàn)來(lái)改善橋梁的氣動(dòng)性能進(jìn)而保證橋梁在臺(tái)風(fēng)的作用下得穩(wěn)定性能。本文詳細(xì)的介紹了施工過(guò)程和相關(guān)投入。主塔施工矮塔部分采用爬模系統(tǒng)來(lái)修建混凝土矮塔,在模具上特別設(shè)計(jì)建立一個(gè)精細(xì)的后張法預(yù)應(yīng)力鋼筋系統(tǒng)來(lái)調(diào)節(jié)每一次爬模過(guò)程中橋塔的幾何形狀。這個(gè)系統(tǒng)自帶一個(gè)“鳥(niǎo)籠”式的施工平臺(tái)來(lái)方便固定鋼筋和模板,以及進(jìn)行混凝土的澆灌,養(yǎng)護(hù)和板的幾何結(jié)構(gòu)的調(diào)整和鋼板之間的相互聯(lián)接。每一個(gè)分部都由七八個(gè)小件組成,每一相鄰節(jié)段相互匹配,精密配合,保證在香港工地上能精確的施工。在橋面板施工時(shí)要不斷的進(jìn)行調(diào)整以保證其正確的位置,只有當(dāng)前三段的試驗(yàn)拼裝順利時(shí)才能進(jìn)行施工,在試驗(yàn)中應(yīng)該對(duì)節(jié)段的連結(jié)度,標(biāo)高,尺寸及平整度進(jìn)行檢查以保證符合標(biāo)準(zhǔn),如果符合標(biāo)準(zhǔn),則將預(yù)留的頂?shù)装宓陌宀牧希ňG色部分)切割,切記預(yù)留設(shè)計(jì)的焊接差距。經(jīng)過(guò)匹配,相鄰的節(jié)段被螺栓臨時(shí)拼接在一起,用來(lái)保證施工時(shí)候的節(jié)段順序和廠房中一致。兩個(gè)18米長(zhǎng)的鋼梁由一個(gè)橫向連接梁連接組成了一個(gè)基本的主跨段。其中一些不同長(zhǎng)度的主梁和他的組件并沒(méi)有在廠房中焊接起來(lái),是因?yàn)樗麄円呀?jīng)配有一個(gè)特俗的重型起吊程序每一個(gè)縱梁通過(guò)分割和標(biāo)記,每一部分由兩個(gè)多輪運(yùn)輸車分別運(yùn)輸?shù)酱鎯?chǔ)區(qū)。隨后將從存儲(chǔ)區(qū)運(yùn)輸?shù)揭粋€(gè)停泊在堤口便于運(yùn)輸?shù)模哂袆?dòng)力定位的駁船上,最后運(yùn)輸?shù)较愀鄣氖┕がF(xiàn)場(chǎng)。鋼橋面鋪裝鋼橋面的鋪裝在混凝土背跨的完成后進(jìn)行,背跨的施工工藝和相關(guān)的工程都被MORGENTHAL等詳細(xì)描述。2008B重吊系統(tǒng)昂船洲大橋的鋼橋面主跨超過(guò)主塔48米與背跨鏈接,88米長(zhǎng)的鋼橋面坐落在橋塔的兩側(cè),在橋塔的一部分已經(jīng)搭建了一個(gè)重力提吊系統(tǒng)(圖9)并隨后被用來(lái)懸挑主跨建設(shè)的一個(gè)平臺(tái)。(MORGENTHAL2008A)在重型起吊系統(tǒng)完成后,第一塊鋼橋面被開(kāi)始張拉的三套背索和兩套主索固定于主塔40米左右,,橋面板被橫側(cè)軸承和縱向液壓緩沖器固定在主塔的兩側(cè)。節(jié)段吊裝主跨段的架設(shè)是在主塔邊的初始跨段上架立起重龍門(mén)從駁船上懸吊新的部分。嚴(yán)格實(shí)施相關(guān)規(guī)定,確保橋梁建設(shè)時(shí)期,繁忙的藍(lán)巴勒海峽的航運(yùn)能繼續(xù)無(wú)阻。駁船運(yùn)用動(dòng)態(tài)定位系統(tǒng)將住跨段運(yùn)輸?shù)狡鸬跷恢?。在起吊過(guò)程中運(yùn)用GPS定位系統(tǒng)取代錨來(lái)保證駁船的正確位置。起吊過(guò)程中盡可能的減少起吊周期,盡可能的多運(yùn)用絞車來(lái)取代鋼絞線吊裝千斤頂。吊裝首先由DP駁船在四艘警戒艇的陪同下航行到起吊位置。吊裝工具下降到駁船上主梁段上的受力位置以下進(jìn)行固結(jié)。兩架起重龍門(mén)吊安裝在主梁的兩端邊緣位置開(kāi)始施力知道梁段提升至目標(biāo)的位置。在這個(gè)時(shí)候應(yīng)及時(shí)將梁段上的木楔子拆除,以防止因駁船運(yùn)行和主梁懸臂之間的共振現(xiàn)象而產(chǎn)生反彈。運(yùn)用絞車和滑輪系統(tǒng)將梁段以每40分鐘抬高80米的速度向懸臂端靠近。最后護(hù)衛(wèi)艇解除整個(gè)藍(lán)巴勒海峽上的交通禁令。梁段安裝因?yàn)殡p箱梁的橫向剛度偏小,在懸臂末端安裝新梁段時(shí)需要特殊的方法。在施工過(guò)程中水平方向上巨大的垂直吊裝龍門(mén)吊(每個(gè)龍門(mén)吊約850噸)將會(huì)使主梁產(chǎn)生一個(gè)較大的繞度。在距離索面約50米之間的橋面將產(chǎn)生一個(gè)將近100毫米的繞度,這些繞度只能通過(guò)橫梁的抗彎剛度來(lái)約束。新梁段在吊裝過(guò)程中因?yàn)槠鸬踉O(shè)備作用點(diǎn)基本與重心重合所以基本不產(chǎn)生變形。兩個(gè)箱型截面的垂直拼裝方式和結(jié)果稍有不同。在梁段拼接的時(shí)候應(yīng)該使架立的梁段稍低于架立梁段。為了克服這種情況,我們專門(mén)設(shè)計(jì)了一種橫向張拉設(shè)備用來(lái)減少新梁段產(chǎn)生的繞度。四個(gè)固定點(diǎn)的受力接近150噸,全部由下面的液壓千斤頂來(lái)提供。新的梁段在受力鋼板上運(yùn)用固定螺栓的方法來(lái)實(shí)現(xiàn)連接段和轉(zhuǎn)折處的精確
下載積分: 10 賞幣
上傳時(shí)間:2024-03-16
頁(yè)數(shù): 6
大?。?0.03(MB)
子文件數(shù):
-
簡(jiǎn)介:JOURNALOFBRIDGEENGINEERING/AUGUST1999/151SELFANCHOREDSUSPENSIONBRIDGESBYJOHNAOCHSENDORF,1STUDENTMEMBER,ASCE,ANDDAVIDPBILLINGTON,2FELLOW,ASCEABSTRACTTHISPAPER,SUMMARIZINGTHEBEGINNINGS,ANALYSIS,ANDFUTUREOFSELFANCHOREDSUSPENSIONBRIDGES,EXAMINESTHEDEVELOPMENTOFTHISUNIQUEBRIDGEFORM,ITSUSESOVERTHEPASTCENTURY,ANDITSADVANTAGESANDDISADVANTAGESTHEKONOHANABRIDGEINOSAKA,JAPAN,ILLUSTRATESTHISTYPEANDPROVIDESACASESTUDYTOCOMPARECONVENTIONALSUSPENSIONBRIDGETHEORYWITHTHERESULTSOFAFINITEELEMENTMODELTHEFINALPORTIONOFTHEPAPEREVALUATESTHEPOTENTIALFORSELFANCHOREDSUSPENSIONBRIDGEDESIGN,ANDPROVIDESRECOMMENDATIONSFORDESIGNENGINEERSTHEGOALHEREISTODESCRIBETHESTRUCTURALBEHAVIOROFSELFANCHOREDBRIDGESINGENERAL,ANDOFTHEKONOHANABRIDGEINPARTICULARFIG21928SEVENTHSTREETBRIDGEINPITTSBURGHFIG1ORIGINAL1915COLOGNEDEUTZBRIDGEINGERMANYPRADE1990INTRODUCTIONSELFANCHOREDSUSPENSIONBRIDGESDIFFERFROMCONVENTIONALSUSPENSIONBRIDGESBECAUSETHEYDONOTREQUIREMASSIVEENDANCHORAGESINSTEAD,THEMAINCABLESARESECUREDTOEACHENDOFTHEBRIDGEDECK,ORSTIFFENINGGIRDER,WHICHCARRIESTHEHORIZONTALCOMPONENTOFCABLETENSIONTHEREFORE,THEENDSUPPORTSRESISTONLYTHEVERTICALCOMPONENTOFTENSION,ANADVANTAGEWHERETHESITECANNOTEASILYACCOMMODATEEXTERNALANCHORAGESBECAUSETHESTIFFENINGGIRDERSUPPORTSTHECABLETENSION,THEGIRDERMUSTBEPLACEDBEFORETHEMAINCABLECANBEERECTEDTHISCONSTRUCTIONSEQUENCE,THEOPPOSITEOFTHATOFACONVENTIONALSUSPENSIONBRIDGE,LIMITSTHESELFANCHOREDFORMTOMODERATESPANSALSOUNLIKETHECONVENTIONALSUSPENSIONFORM,THESELFANCHOREDBRIDGEANALYSISMUSTINCLUDETHEINFLUENCEOFTHELARGEAXIALFORCEINTHEDECKWITHTHESEISSUESINMIND,THISPAPERWILLDISCUSSTHEHISTORICALDEVELOPMENT,STRUCTURALANALYSIS,ANDPOTENTIALAPPLICATIONSOFTHISBRIDGEFORM,ANDWILLCONCLUDEWITHSOMEREFLECTIONSONRECENTSELFANCHOREDSUSPENSIONBRIDGESHISTORICALDEVELOPMENTINTHESECONDHALFOFTHE19THCENTURY,AUSTRIANENGINEERJOSEFLANGERANDAMERICANENGINEERCHARLESBENDERINDEPENDENTLYCONCEIVEDOFTHESELFANCHOREDSUSPENSIONBRIDGEMULLINS1936ALANGERFIRSTWROTEOFHISIDEAIN1859,ANDBENDERSTAKEDHISCLAIMWITHAPATENTISSUEDIN1867‘‘PATENT’’1867NEITHERDESIGNERUSEDCONTINUOUSCABLESINSTEAD,THEYANCHOREDTHEMAINCABLESTOTHEGIRDERATTHEMIDSPANASWELLASATEACHENDOFTHEBRIDGEIN1870LANGERBUILTASMALLSELFANCHOREDBRIDGE,INPOLAND,WHICHCARRIEDTRAINTRAFFIC,WHILEBENDERAPPARENTLYNEVERCONSTRUCTEDASELFANCHOREDBRIDGEALTHOUGHTHESEENGINEERSDIDNOTDIRECTLYINFLUENCEFUTUREDESIGNS,THESELFANCHOREDSUSPENSIONBRIDGEFORMBECAMECOMMONINGERMANYINTHEBEGINNINGOFTHE20THCENTURYGERMANENGINEERSBUILTTHEFIRSTLARGESCALE,SELFANCHOREDSUSPENSIONBRIDGEOVERTHERHINERIVERATCOLOGNE,GERMANY,IN1915MULLINS1936BFIG1THISCOLOGNEDEUTZBRIDGEHADAMAINSPANOF185MANDUTILIZEDTEMPORARYWOODENSCAFFOLDINGTOSUPPORTTHESTEELGIRDERSUNTILTHESUSPENSIONCABLESWEREINPLACE‘‘LENOUVEAU’’1920ANARTCOMMISSIONSELECTEDTHESUSPENSIONFORMFORAESTHETICREASONS,ANDENGINEERSOPTEDTOSELFANCHORTHESUSPENSIONCABLESFORFEAR1GRADSTUDENT,DEPTOFCIVENGRGANDOPERATIONSRES,PRINCETONUNIV,PRINCETON,NJ085442GORDONYSWUPROFESSOR,DEPTOFCIVENGRGANDOPERATIONSRES,PRINCETONUNIV,PRINCETON,NJNOTEDISCUSSIONOPENUNTILJANUARY1,2000TOEXTENDTHECLOSINGDATEONEMONTH,AWRITTENREQUESTMUSTBEFILEDWITHTHEASCEMANAGEROFJOURNALSTHEMANUSCRIPTFORTHISPAPERWASSUBMITTEDFORREVIEWANDPOSSIBLEPUBLICATIONONMARCH23,1998THISPAPERISPARTOFTHEJOURNALOFBRIDGEENGINEERING,VOL4,NO3,AUGUST,1999?ASCE,ISSN10840702/99/00030151–0156/800?50PERPAGEPAPERNO17921THATTHESOILCONDITIONSWOULDNOTBEADEQUATEFOREXTERNALANCHORAGESLEONHARDT1984ACHAINSCOMPOSEDOFEYEBARSPROVIDEDFOREASEOFANCHORINGTOTHESTIFFENINGGIRDERENGINEERSAROUNDTHEWORLDRECOGNIZEDTHECOLOGNEDEUTZBRIDGEASANINNOVATIVEFORM,ANDFOR15YEARSAFTERITSCOMPLETIONITINFLUENCEDTHEDESIGNOFOTHERBRIDGESSPECIFICALLY,THETHREEALLEGHENYRIVERCROSSINGSINPITTSBURGH,PENNSYLVANIA,ANDTHESMALLERKIYOSUBRIDGEINTOKYO,JAPAN,CLOSELYREPLICATEDTHEAPPEARANCEOFTHECOLOGNEDEUTZBRIDGETAJIMAANDSUGIYAMA1991ITWASDESTROYEDIN1945,ANDASTEELBOXGIRDERBRIDGEEXISTSTODAYONTHEORIGINALABUTMENTSPRADE1990THETHREENEARLYIDENTICALBRIDGESCONSTRUCTEDOVERTHEALLEGHENYRIVERINPITTSBURGHFROM1925TO1928REPRESENTTHEMOSTIMPORTANTAMERICANAPPLICATIONOFTHESELFANCHOREDFORMINEVALUATINGTHEPROPOSEDSIXTH,SEVENTH,ANDNINTHSTREETCROSSINGS,THECITYARTCOMMISSIONOFPITTSBURGHREQUESTEDASUSPENSIONFORMFORAESTHETICREASONSINSPIREDBYJBRIDGEENG19994151156DOWNLOADEDFROMASCELIBRARYORGBYTONGJIUNIVERSITYON07/22/13COPYRIGHTASCEFORPERSONALUSEONLYALLRIGHTSRESERVEDJOURNALOFBRIDGEENGINEERING/AUGUST1999/153TABLE1KONOHANABRIDGEDIMENSIONSDIMENSION1VALUE2MAINSPAN300M984FTTOTALSUSPENDEDSPAN540M1,7712FTSAGSPAN16DEPTHOFGIRDER317M104FTWIDTHOFGIRDER265M869FTGIRDERDEPTHMAINSPAN195SELFWEIGHT087TONS/M2170PSFTRAFFICCAPACITY4LANESFIG5ELEVATIONDIAGRAMOFKONOHANABRIDGETABLE2MAJORSELFANCHOREDSUSPENSIONBRIDGESNAMELOCATION1YEAR2MAINSPANM3SIDESPANSM4SAGSPAN5COLOGNEDEUTZGERMANY19151845923186SEVENTHSTREETPITTSBURGH19261348675181KIYOSUJAPAN1928915458171COLOGNEMU¨LHEIMGERMANY19293150910191KONOHANAJAPAN199030001200160YONGJONGKOREA199930001250150BRIDGEASLENDERAPPEARANCETABLE1SUMMARIZESTHEGENERALDIMENSIONSOFTHEKONOHANABRIDGEFIG5GIVESANELEVATIONDIAGRAMTHESUCCESSOFTHEKONOHANABRIDGEISDUETOTHREEMAINASPECTSOFITSDESIGN1THEMETHODOFERECTION2THEUSEOFINCLINEDHANGERSAND3THEUSEOFASTEELBOXGIRDERFIRST,ANEFFICIENTERECTIONSCHEMERESULTEDFROMPREFABRICATINGTHEGIRDERINFIVELARGESECTIONS,WEIGHINGASMUCHAS2,700TONSEACHFLOATINGCRANESLIFTEDTHESESECTIONSINTOPLACE,ANDTWOTEMPORARYSUPPORTSWITHINTHEMAINSPANSUPPORTEDTHEGIRDERSECTIONSDURINGERECTIONKAMEIETAL1992AFTERCONSTRUCTINGTHETWOTOWERS,THEBUILDERSINSTALLEDTHEMAINCABLEUSINGPREFABRICATEDPARALLELWIRESTRANDS,THUSAVOIDINGTHETIMECONSUMINGPROCESSOFCABLESPINNINGTHESECONDSUCCESSFULDESIGNASPECTWERETHEINCLINEDSUSPENDERS,PRETENSIONEDTOAVOIDSLACKENINGUNDERANYLOADINGCONDITIONTHEPRETENSIONINGALSOJACKEDUPTHEMAINGIRDERTOENSUREACCURATECONTROLDURINGERECTIONTHIRD,THEINVERTEDTRAPEZOIDALBOXGIRDER,DESIGNEDWITHSUFFICIENTMOMENTCAPACITYTOSPAN120MBETWEENTHETEMPORARYSUPPORTS,MADETHEERECTIONSCHEMEPOSSIBLEANDMINIMIZEDTHENECESSARYFALSEWORKINADDITION,THECLOSEDBOXSHAPEPROVIDESEXCELLENTAERODYNAMICPERFORMANCEANDHIGHTORSIONALRIGIDITY,CRITICALREQUIREMENTSFORABRIDGESUPPORTEDBYONLYONEMAINCABLELIKETHELANDMARKCOLOGNEDEUTZBRIDGEOF1915,THEKONOHANABRIDGEHASINFLUENCEDOTHERBRIDGEDESIGNSMOSTNOTABLY,THEYONGJONGBRIDGE,WHICHWILLPROVIDEACRITICALLINKWITHTHENEWAIRPORTINSEOUL,SOUTHKOREA,WHENCOMPLETEDIN2,000,ISVERYSIMILARTOTHEKONOHANABRIDGEINITSOVERALLFORMANDDIMENSIONSITS300MMAINSPANANDAFRAMETOWERSARECLEARLYDERIVEDFROMTHEKONOHANABRIDGE,BUTITHASTHREESIGNIFICANTDIFFERENCESFIRST,INORDERTODECREASETHEAXIALGIRDERFORCEDUETOSELFANCHORING,THEMAINSPANCABLESAGISINCREASEDTO60M,20GREATERTHANTHEKONOHANABRIDGESECOND,THEYONGJONGBRIDGEUTILIZESTWOMAINCABLES,WHICHCURVETHREEDIMENSIONALLYFROMTHETOPOFEACHTOWERTOTHEOUTSIDEOFTHEGIRDERATMIDSPAN,ANDPROVIDEINCREASEDLATERALSTABILITYKWONETAL1995THIRD,THESTIFFENINGGIRDERUTILIZESA7MDEEPTRUSS,WHICHCARRIESRAILTRAFFICONTHELOWERLEVEL,ANDEASESCONSTRUCTIONBYSPANNINGLONGDISTANCESWITHOUTTHESUPPORTOFTHEMAINCABLEGILANDCHO1998TABLE2PRESENTSASUMMARYOFTHEDEVELOPMENTOFSELFANCHOREDSUSPENSIONBRIDGESBECAUSETHEFORCEINTHESTIFFENINGGIRDERISEQUALTOTHEHORIZONTALCOMPONENTOFMAINCABLETENSION,RECENTDESIGNSHAVEINCREASEDTHESAGOFTHEMAINCABLEINORDERTOREDUCETHEVALUEOFAXIALCOMPRESSIONINTHESTIFFENINGGIRDERINGENERAL,THESAGSPANRATIOSOFSELFANCHOREDBRIDGESAREAROUND16CONSIDERABLYGREATERTHANTHESAGSPANRATIOSOFEXTERNALLYANCHOREDSUSPENSIONBRIDGES,WHICHTYPICALLYAREAROUND110ANALYSISOFSELFANCHOREDSUSPENSIONBRIDGESTWOTHEORIESHAVEDOMINATEDSUSPENSIONBRIDGEANALYSISOVERTHELASTCENTURYTHEELASTICTHEORYANDTHEDEFLECTIONTHEORYTHEELASTICTHEORYDIDNOTACCOUNTFORTHESTIFFENINGEFFECTOFTHEMAINCABLEUNDERTENSION,ANDTHUSGAVEHIGHERMOMENTSINTHESTIFFENINGGIRDERTHEDEFLECTIONTHEORYOREXACTTHEORYACCOUNTEDFORTHESECONDORDEREFFECTSOFCABLESTIFFNESSANDCORRECTLYREDUCEDTHEMOMENTCARRIEDBYTHESTIFFENINGGIRDERMELAN1913BYTHE1930S,SUSPENSIONBRIDGEDESIGNERSWEREAWAREOFTHEECONOMYOFFEREDBYTHEDEFLECTIONTHEORY,ANDREGARDEDTHEELASTICTHEORYTOBEOBSOLETESTEINMAN1929THEELASTICTHEORYGIVESTHEMOMENTATANYPOINTINTHEDECKGIRDERASMM??HY1WHEREM?LIVELOADMOMENTOFUNSUSPENDEDGIRDERHHORIZONTALCOMPONENTOFCABLETENSIONPRODUCEDBYLIVELOADANDYORDINATEOFMAINSPANCABLECURVEATLOCATIONOFDESIREDMOMENTTHUS,THELIVELOADMOMENTPRODUCEDINTHEGIRDERISREDUCEDBYTHEEFFECTOFTHEHORIZONTALCOMPONENTOFLIVELOADTENSIONINTHECABLEHOWEVER,THEELASTICTHEORYDOESNOTACCOUNTFORTHEADDITIONALRELIEVINGMOMENTPROVIDEDBYTHEHORIZONTALCOMPONENTOFTOTALCABLETENSIONDEADPLUSLIVELOADWHENTHEBRIDGEDEFLECTSADISTANCEV,UNDERTHELIVELOADTHEDEFLECTIONTHEORYACCOUNTSFORTHISCABLESTIFFNESSANDREDUCESTHEMOMENTINTHEGIRDERBYANADDITIONALAMOUNTH?HVTHUSTHEDEFLECTIONTHEORYISANEXTENSIONOFTHEELASTICTHEORYANDISWRITTENMM??HY?H?HV2WHEREH?HHORIZONTALCOMPONENTOFTENSIONINCABLEDUETODEADANDLIVELOADBYACCOUNTINGFORCABLESTIFFNESS,THEDEFLECTIONTHEORYREDUCESTHEREQUIREDGIRDERSTIFFNESSANDPROVIDESCONSIDERABLEECONOMYOVERTHEELASTICTHEORYSTEINMAN1929ACCOUNTINGFORTHELARGEAXIALFORCEINTHEDECKOFSELFANCHOREDSUSPENSIONBRIDGESREQUIRESANADAPTATIONINTRADITIONALSUSPENSIONBRIDGEANALYSISBECAUSETHEDECKCARRIESTHEENTIREHORIZONTALFORCECOMPONENTOFTHECABLE,THEAXIALFORCEINTHEDECKISEQUALTOTHEQUANTITYH?HUNDERADOWNWARDDEFLECTIONV,THEAXIALFORCEWILLPRODUCEANADDITIONALPOSITIVEMOMENTH?HVIFTHEBRIDGEDECKISCONSIDEREDTOBEINITIALLYHORIZONTALJBRIDGEENG19994151156DOWNLOADEDFROMASCELIBRARYORGBYTONGJIUNIVERSITYON07/22/13COPYRIGHTASCEFORPERSONALUSEONLYALLRIGHTSRESERVED
下載積分: 10 賞幣
上傳時(shí)間:2024-03-13
頁(yè)數(shù): 6
大?。?0.51(MB)
子文件數(shù):
-
簡(jiǎn)介:1中文中文9500字,字,7400單詞,單詞,35萬(wàn)英文字符萬(wàn)英文字符出處出處ZOUPXW,SHANGSTIMEDEPENDENTBEHAVIOUROFCONCRETEBEAMSPRETENSIONEDBYCARBONFIBREREINFORCEDPOLYMERSCFRPTENDONSJCONSTRUCTIONBUILDINGMATERIALS,2007,214777788碳纖維增強(qiáng)復(fù)合材料CFRP筋預(yù)應(yīng)力混凝土梁時(shí)間依存性的特性PATRICKXWZOU,SHOUPINGSHANG摘要由于其非腐蝕性和高的抗拉強(qiáng)度性能,碳纖維增強(qiáng)聚合物(CFRP)引起了研究者們的興趣,展開(kāi)全球性的研究CFRP作為混凝土結(jié)構(gòu)預(yù)應(yīng)力筋或增強(qiáng)物的可行性和有效性。然而直到現(xiàn)在,這些研究主要以實(shí)驗(yàn)測(cè)試的形式存在,缺乏的理論體系的提供。本文首先提出了一種分析方法來(lái)預(yù)測(cè)CFRP筋預(yù)應(yīng)力混凝土梁在持續(xù)工作條件下,隨時(shí)間變化的特性,包括混凝土應(yīng)變、曲率和撓度以及預(yù)應(yīng)力損失。本文提出了三個(gè)說(shuō)明性的例子來(lái)介紹如何使用這種分析方法來(lái)計(jì)算隨時(shí)間變化的混凝土應(yīng)變,曲率和預(yù)應(yīng)力CFRP筋混凝土梁的撓度。結(jié)論是,所提出的理論體系適應(yīng)于CFRP筋預(yù)應(yīng)力混凝土梁的隨時(shí)間變化的特性分析,因此CFRP可以有效地用作預(yù)應(yīng)力筋混凝土梁。關(guān)鍵詞碳纖維增強(qiáng)的聚合物;筋;時(shí)間依存性的特性;混凝土梁;撓度;應(yīng)變3??2橫截面分析法在荷載條件下,預(yù)應(yīng)力混凝土梁可能會(huì)出現(xiàn)兩種情況開(kāi)裂或保持完好。本節(jié)討論的橫截面分析的方法,包括未開(kāi)裂截面和開(kāi)裂截面。21分析方法測(cè)定首先計(jì)算導(dǎo)致彎拉開(kāi)裂所需的開(kāi)裂彎矩MCR,這是用于選定未開(kāi)裂截面分析或完全開(kāi)裂截面分析。(第一次發(fā)生開(kāi)裂時(shí)的彎矩被稱為開(kāi)裂彎矩。)如果梁橫截面工作時(shí)的彎矩MS小于開(kāi)裂彎矩MCR,選用無(wú)裂縫截面分析,其他時(shí)候必須使用完全開(kāi)裂截面分析。開(kāi)裂彎矩MCR的計(jì)算使用下面的公式?MCR?PEE??FR???ZB?AG??1?其中PE是有效預(yù)應(yīng)力;E是預(yù)應(yīng)力筋總截面偏心距;FR是混凝土抗彎強(qiáng)度;AG截面總面積;ZB是截面模量。22未開(kāi)裂預(yù)應(yīng)力截面短期分析未開(kāi)裂橫截面短期分析是通過(guò)把黏鋼加固和筋轉(zhuǎn)換成混凝土等效面積,執(zhí)行很簡(jiǎn)單,即在相等的混凝土截面進(jìn)行彈性分析。換算截面如圖1所示。圖1實(shí)際和轉(zhuǎn)換的無(wú)裂縫截面毛條纖維的換算截面面積A、一階面積B和二階面積I分別表示為如下方程A?BD?NP?1AP?NS1?1AS1?NS2?1AS2?2?PE
下載積分: 10 賞幣
上傳時(shí)間:2024-03-12
頁(yè)數(shù): 27
大小: 0.46(MB)
子文件數(shù):
-
簡(jiǎn)介:RELIABILITYBASEDASSESSMENTOFMASONRYARCHBRIDGESJOANRCASAS?SCHOOLOFCIVILENGINEERING,UNIVERSITATPOLITèCNICADECATALUNYAUPC,C/JORDIGIRONA13,08034BARCELONA,SPAINARTICLEINFOARTICLEHISTORYRECEIVED17MAY2010RECEIVEDINREVISEDFORM30SEPTEMBER2010ACCEPTED23OCTOBER2010AVAILABLEONLINEXXXXKEYWORDSMASONRYARCHRELIABILITYFATIGUESERVICEABILITYABSTRACTTHEPAPERPRESENTSAMETHODOLOGYFORTHEPROBABILISTICASSESSMENTOFMASONRYARCHESATTHESERVICEABILITYANDULTIMATELIMITSTATESFIRST,ITEXPLAINSTHEDEFINITIONOFTHEDIFFERENTFAILUREMODESANDCORRESPONDINGLIMITSTATEFUNCTIONSTHATMAYOCCURDEPENDINGONTHETYPEOFMASONRYCONSTRUCTIONSINGLERINGANDMULTIRINGTHEMOSTREPORTEDMODESOFFAILUREARETHEFOURHINGEMECHANISM,THERINGSEPARATIONINMULTIRINGARCHESANDTHESLIPPAGEATTHEFOUNDATIONSBECAUSEOFTHELACKOFRELIABLEMATERIALDATAINTHESTATISTICSENSEORAVAILABLERESPONSEMODELS,ONLYTHOSEMOREPRONETOBEANALYZEDUSINGRELIABILITYBASEDMETHODSARESHOWNINTHISPAPERFOURHINGEMECHANISMANDRINGSEPARATIONTHEPOSSIBILITYOFFATIGUEFAILUREOFMASONRYARCHBRIDGESUNDERSERVICELOADSANDTHEPROPOSALOFRELIABILITYBASEDASSESSMENTMETHODSATTHEULTIMATELEVELOFTHEFOURHINGEMECHANISMAREALSOANALYZEDFINALLY,THEPROPOSEDMETHODOLOGYISAPPLIEDTOANEXISTINGBRIDGE?2010ELSEVIERLTDALLRIGHTSRESERVED1INTRODUCTIONOVERTHEPAST10YEARSTHEREHASBEENANEXTENSIVEPROGRAMMEOFRESEARCHWHICHCONSIDEREDSOMEASPECTSOFMASONRYARCHBEHAVIOURANUMBEROFSMALLANDLARGESCALETESTSHAVEBEENCARRIEDOUTONMASONRYARCHES,MOSTOFTHEMHAVEBEENUNDERSTATICMONOTONICLOADINGANDCONSIDEREDMAINLYTHEARCHRINGITSELFHOWEVER,THEREHASBEENVERYLITTLEWORKDONEONINVESTIGATINGTHELONGTERMEFFECTOFTRAFFICCYCLICLOADINGANDTHEEFFECTOFDETERIORATEDMASONRYONTHEFATIGUELIFEOFTHEBRIDGESEVERALSEMIEMPIRICALANDNUMERICALMETHODSEXISTTODETERMINETHELOADCARRYINGCAPACITYOFMASONRYARCHESMEXEMETHOD,MAXIMUMSTRESSANALYSIS,LIMITANALYSISMECHANISMMETHODS1–3,SOLIDMECHANICSMETHODSCASTIGLIANO’SNONLINEARANALYSIS,FINITEELEMENTANALYSIS,DISCRETEELEMENTANALYSISMANYCOMPUTERBASEDAPPLICATIONSOFTHESEMETHODSALSOEXISTARCHIEM,RING,DIANARECENTLY,THEPOSSIBILITYOFFATIGUEFAILUREUNDERCYCLICLOADINGATNORMALSERVICELEVELOFLOADING,MUCHLOWERTHANTHEULTIMATELOAD4HASSUGGESTEDANEWAPPROACHTOTHEASSESSMENTOFMASONRYARCHESBASEDUPONTHELONGTERMPERFORMANCEOFMASONRYSUBJECTEDTOCYCLICLOADING5,6AVAILABLEASSESSMENTMETHODSOFMASONRYARCHESAREDETERMINISTICINNATURETHEYCANPREDICTULTIMATECAPACITYPROVIDEDTHATALLVARIABLESINVOLVEDINTHERESPONSEAREASSUMEDASDETERMINISTICVALUES,WHATISNOTREALLYTHECASEDUETOUNCERTAINTIESINVOLVEDINGEOMETRY,MATERIALSANDLOADSRELIABILITYBASEDASSESSMENTOFSTRUCTURESANDPARTICULARLYBRIDGESHASBEENSUCCESSFULLYIMPLEMENTEDANDPERFORMEDINRECENTYEARSTHESEMETHODSASSUMETHEINTRINSICUNCERTAINTYOFTHEVARIABLESINVOLVEDMOSTOFTHEEXPERIENCESHAVEBEENDONEINTHEFIELDOFBRIDGESEITHERFROMSTRUCTURALCONCRETEREINFORCEDANDPRESTRESSEDORSTEELSEVERALEXPERIENCESHAVESHOWNTHELARGEAMOUNTOFMONEYTHATCANBESAVEDBYANEFFICIENTANDACCURATEASSESSMENTBASEDONAPROBABILISTICAPPROACH7–12HOWEVERTHEAPPLICATIONTOMASONRYBRIDGESHASBEENALMOSTNEGLIGIBLEONEREASONISTHEDIFFICULTYTODEFINERELIABLEFAILURECRITERIAFORTHISTYPEOFSTRUCTURESANOTHERREASONISTHELACKOFSTATISTICALDATAONMATERIALPROPERTIESOFMASONRYANDFILLINGMATERIALTHEEXPERIMENTALTESTSSHOWTHATNORMALLYTHEFAILUREOFANARCHISOFAGLOBALNATUREMORETHANDUETOTHEFAILUREOFABRIDGECOMPONENTINMOSTCASES,EVENTHEDIVISIONOFTHEBRIDGEINDIFFERENTCOMPONENTSISALMOSTIMPOSSIBLEFORTHISREASON,ALSOTHELACKOFACCURATETHEORETICALMODELSFORTHEIDEALIZATIONOFTHEBEHAVIOUROFTHEMASONRYARCHBRIDGEASASYSTEM,INCLUDINGTHEINTERACTIONEFFECTSWITHTHEFILLINGMATERIAL,SPANDRELWALLS,ETC,HASBEENANOTHERDIFFICULTYNOTYETOVERCOMELAST,BUTNOTLEAST,THEABSENCEOFRELIABLEDATAONTHESTATISTICALDEFINITIONOFTHEMATERIALPROPERTIESHASBEENANOTHERISSUETHATHASLIMITEDTHEUSEOFPROBABILITYBASEDASSESSMENTTECHNIQUESVERYFEWDATAISAVAILABLEFORTHEBEHAVIOUROFTHEMASONRYUNDERSTATICLOADSTHELACKOFEXPERIMENTALDATAISEVENMOREDRAMATICINTHECASEOFCYCLICLOADINGESTIMATIONOFMASONRYSTRENGTHFROMMEASUREMENTSMAYTHENBEONEOFKEYISSUESOFTHEASSESSMENTOFEXISTINGSTRUCTURES13,14HOWEVER,SOMEEXPERIENCESHAVESHOWNTHEPOTENTIALITYOFTHEUSEOFRELIABILITYBASEDASSESSMENTINTHECAPACITYASSESSMENTOFMASONRYSTRUCTURESINBENDINGANDCOMPRESSION15–18ASAN09500618/SEEFRONTMATTER?2010ELSEVIERLTDALLRIGHTSRESERVEDDOI101016/JCONBUILDMAT201010011?TEL34934016513FAX34934054135EMAILADDRESSJOANRAMONCASASUPCEDUCONSTRUCTIONANDBUILDINGMATERIALSXXX2010XXX–XXXCONTENTSLISTSAVAILABLEATSCIENCEDIRECTCONSTRUCTIONANDBUILDINGMATERIALSJOURNALHOMEPAGEWWWELSEVIERCOM/LOCATE/CONBUILDMATPLEASECITETHISARTICLEINPRESSASCASASJRRELIABILITYBASEDASSESSMENTOFMASONRYARCHBRIDGESCONSTRBUILDMATER2010,DOI101016/JCONBUILDMAT201010011THEFAILUREMECHANISMBYRINGSEPARATIONNORMALLYAPPEARSUNDERCYCLICLOADINGCONDITIONS,ALTHOUGHALSOAMONOTONICEXTREMELOADMAYCAUSETHESEPARATIONINTHECASEOFSTATICLOADING,RINGSEPARATIONCANOCCURBETWEENTHE14POINTANDTHENEARESTABUTMENTANDTHEFAILUREISCONSIDEREDASANULTIMATELIMITSTATEFORCYCLICLOADING,THESEPARATIONOCCURSBETWEENTHE14AND34POINTINTHECASEOFTHERINGSEPARATIONUNDERCYCLICLOADING,THEFAILURESHOULDBECONSIDEREDAFATIGUELIMITSTATE,OR,AGAIN,ASAPERMISSIBLELIMITSTATE4,63LIMITSTATEFUNCTIONSDEPENDINGONTHECRITERIAADOPTEDTODEFINETHEFAILUREOFTHEBRIDGE,DIFFERENTLIMITSTATEFUNCTIONSANDDIFFERENTLEVELSOFASSESSMENTCANBEFORMULATEDACCORDINGTOTHEFAILUREMECHANISMSDEFINEDINSECTION2,THEPOSSIBLELEVELSOFASSESSMENTANDCORRESPONDINGLIMITSTATEFUNCTIONSAREDESCRIBEDBELOWDESPITEASIGNIFICANTUNCERTAINTYEXISTSONTHEABILITYOFTHEUSEDMODELSTOCHARACTERIZETHEBEHAVIOUROFMASONRYSTRUCTURES,EVENFORTHEMOSTADVANCEDONES,MODELUNCERTAINTYHASNOTBEENCONSIDEREDEXPLICITLYINTHEDEFINITIONOFTHELIMITSTATEFUNCTIONSTHEMEANREASONISTHAT,ATTHEPRESENTMOMENT,NOTSUFFICIENTEXPERIMENTALDATAISAVAILABLETOSTATISTICALLYDEFINESUCHUNCERTAINTYITISCLEARTHATTHISSHOULDBECORRECTEDASMORECOMPARISONSBETWEENEXPERIMENTALANDNUMERICALRESULTSWILLBECOMEAVAILABLENEGLECTINGTHEMODELUNCERTAINTYINTHELIMITSTATEFUNCTIONCANBECOMPENSATEDBYREQUIRINGAHIGHERTARGETRELIABILITYLEVELINTHESTRUCTURETHANINTHECASEWHEREMODELUNCERTAINTYISCONSIDEREDATLEAST,THREEASSESSMENTLEVELSEXIST,WITHINCREASINGLEVELOFCOMPLEXITYANDACCURACYDEPENDINGONTHEFAILURECRITERIAANDANALYTICALMODELUSEDTHEYARESUMMARIZEDINTHEDIAGRAMINFIG4JOINTLYWITHTHEFAILUREMODESANDLIMITSTATESCONSIDERED,ANDFULLYDESCRIBEDBELOW31FIRSTLEVELOFASSESSMENTLOCALFAILURE311MONOTONICLOADINGTHISFAILUREOCCURSWHENANEXTREMELOADCAUSESEXCESSIVEBENDINGMOMENTS/SHEARFORCESCOMBINEDWITHIMPORTANTAXIALLOADSRESULTINGINTHEFAILUREEITHERBECAUSETENSIONSTRESSAPPEARSOREXCESSIVECOMPRESSIONINTHEMATERIALPROVOKESCRUSHINGOFTHEMASONRYTHEFAILURECRITERIACANBEBASEDONTHEULTIMATELIMITSTATEULSFORMULATIONTHELOWESTCAPACITYLEVELWILLBEOBTAINEDCONSIDERINGTHEFAILUREOFTHEBRIDGEWHENANYFIBREATANYCROSSSECTIONISINTENSIONORITREACHESTHEMAXIMUMALLOWABLECOMPRESSIONOFTHEMATERIALTHECORRESPONDINGLSFUNCTIONISG?RMING?FC?RMAXD1TWHERERMINANDRMAXARETHELOWESTANDHIGHESTSTRESSATANYPOINTOFTHEBRIDGEANDFCISTHECOMPRESSIVESTRENGTHOFMASONRYTHEVALUEOFTHEINTERNALFORCESBENDINGMOMENT,NORMALFORCEANDTHEDISTRIBUTIONOFSTRESSESINTHECROSSSECTIONAREDERIVEDASSUMINGALINEARBEHAVIOUROFTHESTRUCTUREANDTHEMATERIALOFCOURSE,THISISANEXTREMELYRESTRICTIVEANDOVERCONSERVATIVEFAILURECRITERIONHOWEVER,IFTHEBRIDGEPASSESTHISLEVELOFASSESSMENT,THATREQUIRESVERYSIMPLEMODELLINGTOOLS,ITMAYBEASSUREDTHATTHEBRIDGEISINVERYGOODSHAPE312CYCLICLOADINGFATIGUETHEFEWAVAILABLEHIGHCYCLEFATIGUETESTSEITHERINSMALLSPECIMENS23ORFULLLABORATORYMODELS4HAVESHOWNTHATTHEFATIGUESTRENGTHOFBRICKMASONRYSUBJECTTOCOMPRESSIVEBENDINGSTATEDEPENDSUPONTHEINDUCEDSTRESSRANGE,THEMEANORMAXIMUMINDUCEDSTRESSANDTHEQUASISTATICCOMPRESSIVESTRENGTHOFTHEMASONRYUNDERSIMILARLOADINGCONDITIONSCONSIDERINGTHATASETOFEXPERIMENTALPOINTSINTHES–NPLANEISPROVIDED,THENTHEFATIGUECAPACITYFROMAPROBABILISTICPOINTOFVIEWCANBEANALYSEDINASIMILARWAYASINTHECASEOFCONCRETEORSTEEL24THELIMITSTATEFUNCTIONINTHECASEOFSEVERALNUMBEROFCYCLESOFDIFFERENTLOADINTENSITY,ASSUMINGTHATMINER’SRULEISOFAPPLICATION6,CANBEWRITTENINTHEFOLLOWINGWAYG?1?XDRININID2TNINUMBEROFCYCLESOFLOADLEVELDRIDUETOEXTERNALLOADSRANDOMVARIABLEANDNINUMBEROFCYCLESOFLOADLEVELDRITHATTHEBRIDGECANSUPPORTRANDOMVARIABLENIASARANDOMVARIABLEWILLBEOBTAINEDVIAASTRUCTURALANALYSISTAKINGINTOACCOUNTTHERANDOMNESSINTHELIVELOADSACTINGONTHEBRIDGEOR,ALTERNATIVELY,BYEXTRAPOLATIONOFMEASUREMENTSTAKENINTHEBRIDGEALSOTHEVARIABILITYOFTHEBRIDGEPROPERTIESSHOULDBECONSIDEREDINTHEDEFINITIONOFNIASTHESTRESSINCREMENTWILLALSODEPENDONTHESEPROPERTIESATTHEPRESENTSTAGEANDDESPITESOMEPRELIMINARYTESTS6,THEREISNOTYETACLEAREVIDENCETHATTHEMINER’SRULEISAPPLICABLETOMASONRYMATERIALASITSEEMSTOBEFORSTEELINTHISSENSE,THEREISSTILLALIMITATIONFORAFULLYAPPRAISALOFTHERESULTSOBTAINEDBYTHEAPPLICATIONOFTHEPROPOSEDASSESSMENTMETHODTHEWAYTODERIVETHESTATISTICSOFRANDOMVARIABLENIISBYSIMULATIONOFTRAFFICEFFECTSJOINTLYWITHSIMULATIONOFGEOMETRICANDMATERIALPROPERTIESOFTHESTRUCTURE24,25INTHECASEOFRAILWAYTRAFFICANDTAKINGINTOACCOUNTTHATTHESTRESSINCREMENTSDUETOBRIDGEDYNAMICSWILLBEVERYLOWFORTHISTYPEOFBRIDGESTHEINFILLMITIGATESTHEVIBRATIONLEVEL,ONEMAYCONSIDERTHEPASSAGEOFEACHCONVOYASACYCLEOFLOADINGTHESTATISTICALDEFINITIONOFNICANBEDONEINTHEFOLLOWINGWAYDIFFERENTWORKSHAVESHOWNTHATTHEWEIBULLDISTRIBUTIONFUNCTIONAGREESVERYWELLWITHTHEEXPECTEDPHYSICALCRITERIAOFPROGRESSIVEFATIGUEDETERIORATION26,27ONTHEBASISOFPHYSICALLYVALIDASSUMPTION,SOUNDEXPERIMENTALVERIFICATION,RELATIVEEASEINITSUSEANDBETTERDEVELOPEDSTATISTICS,THEWEIBULLDISTRIBUTIONHASBEENWIDELYUSEDFORTHEFATIGUEANALYSISOFMETALSITISALSOWELLSUITEDFORCERTAINPROCEDURESOFSTATISTICALEXTRAPOLATIONOFLARGESYSTEMS26IN27,28,THEDISTRIBUTIONOFFATIGUELIFEOFCONCRETEWASFOUNDALSOTOAPPROXIMATELYFOLLOWTHEWEIBULLDISTRIBUTIONSOMETHEORETICALANDEXPERIMENTALWORKS29,30HAVESHOWNALSOTHEFEASIBILITYOFTHEWEIBULLDISTRIBUTIONREGARDINGTHESTATISTICALMODELFORSTEELWIRESANDSTRANDSTOFATIGUERINGSEPARATIONFIG3FAILUREBYRINGSEPARATIONINAMULTIRINGARCHTESTCARRIEDOUTATTHEUNIVERSITYOFSALFORDUK4JRCASAS/CONSTRUCTIONANDBUILDINGMATERIALSXXX2010XXX–XXX3PLEASECITETHISARTICLEINPRESSASCASASJRRELIABILITYBASEDASSESSMENTOFMASONRYARCHBRIDGESCONSTRBUILDMATER2010,DOI101016/JCONBUILDMAT201010011
下載積分: 10 賞幣
上傳時(shí)間:2024-03-13
頁(yè)數(shù): 11
大?。?1.21(MB)
子文件數(shù):
-
簡(jiǎn)介:中文中文7700字,字,5000單詞,單詞,28萬(wàn)英文字符萬(wàn)英文字符出處出處KOJM,NIYQTECHNOLOGYDEVELOPMENTSINSTRUCTURALHEALTHMONITORINGOFLARGESCALEBRIDGESJENGINEERINGSTRUCTURES,2008,271217151725畢業(yè)設(shè)計(jì)(論文)資料附件外文文獻(xiàn)原文及譯文學(xué)生姓名學(xué)號(hào)班級(jí)專業(yè)橋梁工程指導(dǎo)教師年月提供規(guī)劃和優(yōu)先橋梁檢查、修復(fù)、維修的依據(jù)和指令;V通過(guò)評(píng)估維修的有效性來(lái)監(jiān)測(cè)維修和重建,進(jìn)而改造和維修工程;(VI)為橋梁研究的前沿領(lǐng)域提供大量的實(shí)測(cè)數(shù)據(jù),這些領(lǐng)域包括抗風(fēng)抗震設(shè)計(jì)、新型結(jié)構(gòu)和新型材料應(yīng)用。制定和實(shí)施結(jié)構(gòu)健康監(jiān)測(cè)系統(tǒng)并充分實(shí)現(xiàn)上述目標(biāo),在當(dāng)下仍是一個(gè)挑戰(zhàn),它需要高度協(xié)調(diào)的跨學(xué)科研究來(lái)將其他領(lǐng)域的創(chuàng)新技術(shù)充分應(yīng)用到土木工程體系中。實(shí)際上,結(jié)構(gòu)健康研究已經(jīng)成為近年來(lái)國(guó)際研究的一個(gè)主要課題1921,它包括遙感、通信、信號(hào)處理、數(shù)據(jù)管理、系統(tǒng)識(shí)別、信息技術(shù)等方面,對(duì)該課題的研究需要土木、機(jī)械、電氣和計(jì)算機(jī)工程等學(xué)科的合作。橋梁結(jié)構(gòu)健康監(jiān)測(cè)目前面臨的挑戰(zhàn)正被定義為分布式和嵌入式傳感、數(shù)據(jù)管理和存儲(chǔ)、數(shù)據(jù)挖掘和知識(shí)發(fā)現(xiàn)、診斷方法以及能為橋梁業(yè)主/經(jīng)理的維護(hù)和管理提供有用信息的簡(jiǎn)報(bào)。本文中,作者通過(guò)對(duì)大規(guī)模橋梁健康監(jiān)測(cè)做法的現(xiàn)狀的觀察,站在研究者和實(shí)踐者的角度,并通過(guò)幾個(gè)健康監(jiān)測(cè)的典范探索出應(yīng)對(duì)上述挑戰(zhàn)的關(guān)鍵技術(shù)。2橋梁健康監(jiān)測(cè)的工作狀態(tài)橋梁結(jié)構(gòu)長(zhǎng)期健康監(jiān)測(cè)系統(tǒng)的成功實(shí)施和運(yùn)行已經(jīng)廣為人知。目前為止,已有大約40座大跨度橋梁(含100米或更長(zhǎng))接受過(guò)結(jié)構(gòu)健康監(jiān)測(cè)系統(tǒng)的檢測(cè),它們之中的典型代表有德瑪克的大貝爾特海峽大橋1、加拿大的聯(lián)邦大橋23、香港的青馬橋24、美國(guó)的巴里橋25、日本的明石海峽大橋26和韓國(guó)的西海大橋27。表1列出了中國(guó)20座用實(shí)時(shí)監(jiān)測(cè)系統(tǒng)監(jiān)測(cè)的橋梁(包括香港特別行政區(qū)),表中不包括東海大橋(由420米和332米的兩座斜拉橋組成)、杭州灣跨海大橋(由主跨分別為448米和318米的斜拉橋組成)和第三南京長(zhǎng)江大橋(主跨為648米的斜拉橋),這座橋的長(zhǎng)期結(jié)構(gòu)健康監(jiān)測(cè)系統(tǒng)正在設(shè)計(jì)中。幾個(gè)關(guān)于大規(guī)模橋梁健康監(jiān)測(cè)的近期發(fā)展趨勢(shì)值得一提。I對(duì)于最近的一些橋梁,如深圳西部通道、昂船洲大橋、上海崇明隧道(主跨1200米的斜拉橋)和墨西拿海峽大橋(主跨3300米的特大懸索橋),健康監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)成為了橋梁設(shè)計(jì)招標(biāo)的一部分。橋梁設(shè)計(jì)和檢測(cè)系統(tǒng)的整合既保證了工程師們密切關(guān)注的問(wèn)題反映在了監(jiān)測(cè)系統(tǒng)之中,又考慮了民間關(guān)于實(shí)施健康監(jiān)測(cè)的規(guī)定;II新建橋梁上長(zhǎng)期監(jiān)測(cè)系統(tǒng)的實(shí)施,如錢(qián)江四橋、深圳西部通道、昂船洲大橋和蘇通長(zhǎng)江大橋完成了與施工進(jìn)度同步,由此一來(lái),類似于腐蝕傳感器、應(yīng)變計(jì)和光纖傳感器的特定類型的單向傳感器可以在橋梁施工的特定階段嵌入到結(jié)構(gòu)中;III最近制定的長(zhǎng)期健康監(jiān)測(cè)系統(tǒng)強(qiáng)調(diào)對(duì)橋梁完整性、耐用性
下載積分: 10 賞幣
上傳時(shí)間:2024-03-17
頁(yè)數(shù): 17
大?。?2.05(MB)
子文件數(shù):