版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 測量不確定度講義</b></p><p> ?。▋?nèi)部材料,不許外傳)</p><p> 全國標(biāo)準(zhǔn)樣品技術(shù)委員會 </p><p><b> 陳柏年</b></p><p><b> 作者說明</b></p><p>
2、 在現(xiàn)代測量實踐中,由于測量結(jié)果是所有輸入量綜合作用的結(jié)果,而所有輸入量是通過規(guī)定的方法加以確定的,所以在每一次特定的測量中,所有的輸入量都是隨機的、不確定的!例如:當(dāng)把溫度作為一個測量結(jié)果的輸入量時,則必須在獲得測量結(jié)果的測量方法(或程序)中提出對溫度進行控制的范圍要求,如(25±0.1)℃。這樣每次測量時的實際溫度值,既必須在這個規(guī)定的范圍內(nèi),但又不要求完全相同。換言之,輸入量溫度在每次測量的特定時刻,溫度值是規(guī)定范圍內(nèi)的
3、一個隨機的、不確定的值(對于其它輸入量情況相同)。這樣我們就可以發(fā)現(xiàn):由于每個測量結(jié)果的輸入量是隨機的、不確定的,所以每個測量結(jié)果必然也是隨機的、不確定的。那么為什么在傳統(tǒng)的最大允許誤差理論中沒有發(fā)現(xiàn)這個“真理”呢?原因就在于:在傳統(tǒng)測量理論中,一個合格測量的前提使:要建立所有具有顯著影響的輸入量與輸出量之間的函數(shù)關(guān)系式(或稱數(shù)學(xué)物理方程);而對影響不顯著的輸入量,則予以忽略。例如:測量一根鋼棒的長度,當(dāng)測量結(jié)果以mm級表示時,溫度影響
4、可以忽略;當(dāng)測量結(jié)果以μm級表示時,則找出輸入量溫度和輸出量長度之間的函數(shù)關(guān)系式,對溫度影響加以修正。但是,當(dāng)輸入量對輸出量的影響既</p><p> 目 次</p><p> 第1章 測量不確定度發(fā)展沿革(第4頁)</p><p> 第2章 測量不確定度預(yù)備知識(第8頁)</p><p> 第3章 三個數(shù)學(xué)模型(第1
5、0頁) </p><p> 第4章 測量不確定度評定(A類)(第15頁)</p><p> 第5章 測量不確定度評定(B類)(第16頁)</p><p> 第6章 合成測量不確定度評定(第18頁)</p><p> 第7章 擴展測量不確定度的確定(第21頁)</p><p> 第8章 測量不確定度的報告和表示
6、第22頁)</p><p> 第9章 實例(23頁)</p><p> 第10章 現(xiàn)代測量理論體系(第33頁)</p><p> 附錄:ASTM國際組織制定的標(biāo)準(zhǔn)檢測方法中的測量不確定度(第42--47頁)</p><p> 第1章 測量不確定度的發(fā)展沿革</p><p><b> 1.1 前言&
7、lt;/b></p><p> 上個世紀(jì)七十年代,隨著經(jīng)濟全球化和高新技術(shù)的迅猛發(fā)展(經(jīng)濟全球化更加強度測量結(jié)果的一致性,高新技術(shù)更加強調(diào)測量結(jié)果的再現(xiàn)性),傳統(tǒng)的最大允許誤差理論已經(jīng)不能適應(yīng)要求!因為,這些測量更依賴于測量方法(檢測方法)的標(biāo)準(zhǔn)化、規(guī)范化。在依據(jù)一個標(biāo)準(zhǔn)測量方法進行測量時,由于標(biāo)準(zhǔn)測量方法規(guī)定控制的測量條件不可能無限完善,所以每次測量的結(jié)果也不可能完全相同,相反,應(yīng)該是離散的!正像傳統(tǒng)測
8、量理論將最大允許誤差作為評定測量儀器好壞的依據(jù)一樣,新的理論把這種離散程度的好壞作為評定標(biāo)準(zhǔn)測量方法水平高低的依據(jù)。眾所周知,要評定這種離散性就必須確定這種離散性的數(shù)學(xué)模型,而成熟的數(shù)學(xué)理論證明:當(dāng)標(biāo)準(zhǔn)測量方法處于統(tǒng)計控制條件下(例如:重復(fù)性條件或復(fù)現(xiàn)性條件)時,這種離散性是服從一定的分布的(例如:正態(tài)分布、均勻分布、三角分布等)。這時,根據(jù)最小二乘法,就可以采用標(biāo)準(zhǔn)偏差來表征它的離散程度。新的理論把這種標(biāo)準(zhǔn)偏差稱為測量不確定度。<
9、;/p><p> 由于缺乏對測量不確定度表示的國際一致性地認(rèn)可,所以1977年世界上計量學(xué)的權(quán)威機構(gòu)國際計量委員會(CIPM)要求國際計量局(BIPM)同有關(guān)國家標(biāo)準(zhǔn)實驗室聯(lián)合研究這個問題。</p><p> BIPM制訂了一份詳細(xì)的調(diào)查表,分發(fā)給32個國家對這個問題感興趣的國家計量學(xué)實驗室,并與5個國際組織溝通了該信息。1979年初,收到了21個實驗室的回應(yīng),幾乎所有實驗室都相信:制定一
10、個國際認(rèn)可的表示測量不確定度的程序和將各個不確定度分量合成為單個總不確定度是重要的,但是對采用什么方法來達(dá)到此目的則觀點有分歧。BIPM招集了一次會議,目的是統(tǒng)一制定一個規(guī)定不確定度的總的可接受的程序,有11個國家標(biāo)準(zhǔn)實驗室的代表參加了會議。這個研究不確定度表述的工作組制訂了一個國際建議INC-1(1980)《實驗不確定度的表示》,1981年CIPM批準(zhǔn)了這個國際建議,1983年重新加以確認(rèn)。</p><p>
11、 CIPM將依據(jù)該工作組建議(僅僅是一個簡明的摘要而不是一個詳細(xì)的規(guī)定)來制定一個更詳細(xì)指南的任務(wù)提交給了ISO,因為ISO能比較好地反映工業(yè)、商業(yè)領(lǐng)域中廣泛的興趣和需要。</p><p> 由于ISO有關(guān)計量學(xué)方面的技術(shù)咨詢組ISO/TAG4的任務(wù)是負(fù)責(zé)協(xié)調(diào)、指導(dǎo)ISO標(biāo)準(zhǔn)中測量問題,并且有參加ISO的6個國際組織(這6個組織為國際電工組織IEC、國際計量委員會CIPM、國際法制計量組織OIML、國際物理和應(yīng)
12、用物理聯(lián)盟IUPAP、國際化學(xué)和純化學(xué)聯(lián)盟IUPAC、國際臨床醫(yī)學(xué)聯(lián)盟IFCC)派人參加,所以這個任務(wù)就交由ISO/TAG4負(fù)責(zé)。</p><p> ISO/TAG4由此建立了第3工作組ISO/TAG4/WG3,成員來自BIPM、ISO、IEC和OIML,由ISO/TAG4主席指定。該工作組被賦予如下工作:</p><p> 依據(jù)BIPM工作組提出的不確定度表述建議制定一個指導(dǎo)文件,提
13、供在標(biāo)準(zhǔn)化、校準(zhǔn)、實驗室認(rèn)可和計量學(xué)服務(wù)方面應(yīng)用測量不確定度的表示規(guī)則。這個指南的目的是:</p><p> * 研究不確定度是如何獲得的全部信息;</p><p> * 為測量結(jié)果的國際比對提供依據(jù)。</p><p> 當(dāng)報告物理量的測量結(jié)果時,具有如下義務(wù):要給出該結(jié)果質(zhì)量的某些定量指示,以便應(yīng)用該結(jié)果時,可以評定它的可靠性。沒有這個指示,測量結(jié)果就不能被
14、比較(無論是在它們自己中間比較,還是與在標(biāo)準(zhǔn)或規(guī)范中給出得標(biāo)準(zhǔn)值比較)。所以必須存在一個可操作的、容易理解的、一般的可接受表征化這些指示(一個測量結(jié)果質(zhì)量的定量指示),即評定和表示這個測量結(jié)果的不確定度。</p><p> 不確定度是一個定量分布的概念在測量歷史中是一個相當(dāng)新的概念。雖然,在測量科學(xué)(計量學(xué))中,誤差和誤差分析是測量實踐中的一部分。目前廣泛認(rèn)可的是:當(dāng)所有的已知的或被懷疑的誤差分量已經(jīng)被估計,并
15、且進行了合適的糾正,仍然包含有一個糾正引入的不確定度。即:測量結(jié)果究竟在多大程度上代表被測量的值?</p><p> 正如SI在所有科學(xué)技術(shù)測量中的通用性一樣,一個世界范圍內(nèi)評定和表示不確定度也需要具有一致性。在市場全球化的時代,對于在科學(xué)、工程、商業(yè)、工業(yè)和合適解釋、理解法規(guī)中測量結(jié)果波動范圍的顯著性是非常必須的:因為評定和表示不確定度的方法在世界范圍內(nèi)的一致,可以把在不同國家進行的測量進行方便地比較。這是在
16、不同空間測量一致性;當(dāng)然,在同一個實驗室不同時間測量一致性也是目的之一。</p><p> 評定和表示一個測量結(jié)果不確定度的理想方法應(yīng)是:</p><p> 具有通用性,方法應(yīng)適用于所有種類的測量,測量中所有輸入數(shù)據(jù)的類型。</p><p> 用于表示不確定度的實際量應(yīng)是:</p><p> 具有內(nèi)部一致性:它應(yīng)是直接從貢獻給它的分量
17、中推導(dǎo)出來的,同時這些分量是如何獨立的?如何分為子分量的?</p><p> 具有可傳遞性:可以直接用評定一個結(jié)果的不確定度去評定另一個測量的不確定度(當(dāng)?shù)?個測量結(jié)果用于第2個測量中時)。</p><p> 而且在許多工業(yè)、商業(yè)以及健康安全應(yīng)用中,常常必須提供測量結(jié)果波動的區(qū)間,在這個區(qū)間里,采用這種測量時,合理賦予給這個量的值(即測量結(jié)果),以大的分布數(shù)落在這個區(qū)間里。這樣,估計和
18、表示測量不確定度的理想方法應(yīng)能提供這么一個區(qū)間,特別是提供一個相應(yīng)的、滿足這些要求的、可實現(xiàn)方式的平均概率或置信區(qū)間。</p><p> 這一指南文件依據(jù)的方案摘要是工作組提供的建議INC-(1980)《實驗不確定度的表示》,是CIPM要求BIPM作為召集人制訂的。它滿足所有上述摘要中的要求,理由在附錄E《確認(rèn)INC-1(1980)提出方案的合適性》中提供。它不適用于現(xiàn)行大多數(shù)其它方法的情況。建議INC-1(1
19、980)被批準(zhǔn)后,又被CIPM重新確認(rèn)為建議1(CI-1981)和建議1(CI-1986)</p><p> 附錄A是CIPM建議1(CI-1981)和建議1(CI-1986)的英文翻譯稿(分別見A.2和A.3)。由于INC-1(1980)是建立本文件的基礎(chǔ),所以在0.7中提供它的英文稿。法文具有權(quán)威性,在A.1中再一次列出。測量不確定度評定和表示指南文件中規(guī)定的程序簡明的摘要見第8章,其它附錄為:</p
20、><p> 附錄B計量學(xué)一般術(shù)語;</p><p> 附錄C基本統(tǒng)計術(shù)語和概念;</p><p> 附錄D真值、誤差和不確定度;</p><p> 附錄E 確認(rèn)INC-1(1980)提出方案的合適性;</p><p> 附錄F估計不確定度分量的實用建議;</p><p> 附錄G自由度和
21、置信區(qū)間;</p><p><b> 附錄H 實例;</b></p><p> 附錄J 文件中采用的原理性符號和</p><p><b> 附錄K引用文獻。</b></p><p> 建議INC-1(1980)《實驗不確定度的表示》</p><p> ?。?)、在一個
22、測量結(jié)果中的不確定度一般由幾個分量組成,根據(jù)估計它們數(shù)值的方式,它們可以分為兩類:</p><p> A、通過統(tǒng)計方法估計的不確定度;</p><p> B、通過其它方法估計的不確定度。</p><p> 對于A類和B類的分類和以前的隨機和系統(tǒng)不確定度分類之間并不總是存在一個簡單的一致性。系統(tǒng)不確定度可能被誤導(dǎo),所以應(yīng)避免應(yīng)用。</p><
23、p> 任何詳細(xì)的不確定度報告應(yīng)有全部分量的一覽表。獲得每一個不確定度分量值所采用的方法</p><p> ?。?)、A類分量采用估計的方差Si和自由度νi來表征(或估計的標(biāo)準(zhǔn)偏差Si表征)。必要時,給出協(xié)方差。</p><p> ?。?)、分量B應(yīng)被Uj表征,它可以被考慮為相應(yīng)方差(假定其存在)的近似值。象標(biāo)準(zhǔn)偏差一樣,Uj 也可以被處理成Uj。必要時,以同樣的方式處理協(xié)方差。&l
24、t;/p><p> ?。?)、合成不確定度應(yīng)采用合成方差的通用方法獲得的值來表征。合成不確定度和它的分量應(yīng)采用標(biāo)準(zhǔn)偏差的形式表示。</p><p> ?。?)、對于特定的應(yīng)用,必須乘一個因子來獲得總不確定度,這個因子必須被規(guī)定。</p><p> 1.2 GUM:1993版(1995重新確認(rèn))的適用范圍</p><p> GUM:1993版
25、規(guī)定是:建立評定和表示測量不確定度的一般規(guī)則,包括各種準(zhǔn)確度水平和各個領(lǐng)域(從商業(yè)測量到基礎(chǔ)研究)。所以,GUM規(guī)定的原則預(yù)期是適用于廣泛的測量領(lǐng)域,包括以下要求:</p><p> * 生產(chǎn)中的質(zhì)量控制和維護;</p><p> * 符合強制性法律、法規(guī);</p><p> * 科學(xué)和工程中開發(fā)、基礎(chǔ)研究和應(yīng)用研究;</p><p>
26、 * 校準(zhǔn)測量標(biāo)準(zhǔn)和儀器,為了確保測量溯源到國家標(biāo)準(zhǔn),履行對整個國家測量體系的檢驗; </p><p> * 開發(fā)、維護和比對國際、國家物理量的基準(zhǔn)標(biāo)準(zhǔn),包括RM(標(biāo)準(zhǔn)樣品)。</p><p> GUM主要涉及到被測量是一個很好定義了的物理量的測量不確定度的表示,它能夠被一個本質(zhì)上是唯一的值表征。如果被測量只能被一些值的分布表示,或依賴于一個或多個參數(shù)。例如:時間。這時,就要求提供一
27、組具有分布的量(或該被測量所依賴的量)對該被測量描述。</p><p> GUM也適用于(與實驗的概念設(shè)計和理論分析、測量方法、復(fù)雜成分、復(fù)雜系統(tǒng)有關(guān)的)測量中不確定度評定和表示。因為一個測量結(jié)果和它的不確定度可能是概念性的、完全依賴于假設(shè)數(shù)據(jù),在GUM的術(shù)語中,測量結(jié)果應(yīng)被理解為這種更廣泛的含義。</p><p> GUM提供測量不確定度評定和表示的一般規(guī)則,而不是詳細(xì)的技術(shù)指導(dǎo)書。
28、并且也不研究一個被評定過的、特定測量結(jié)果的不確定度如何用于不同的目的。例如:做出一個這個結(jié)果與其它相似的結(jié)果之間的可比性、建立一個制造過程的容許限值,或確定一個(化學(xué))反應(yīng)過程是否能被安全實施?</p><p> 所以,如果需要的話,必須依據(jù)本GUM制定特定的標(biāo)準(zhǔn),來滿足特定的專業(yè)檢測技術(shù)領(lǐng)域需要;或滿足不確定度定量化表示的各種應(yīng)用需要。這些準(zhǔn)則可以是GUM內(nèi)容的簡化,但是必須包括一個合適的測量準(zhǔn)確度水平、復(fù)雜
29、性和合適應(yīng)用的詳細(xì)內(nèi)容。</p><p> 注:可能存在測量不確定度概念不完全適合的情況,例如確定一個檢測方法的精密度時(見參考文獻(5)例子)。</p><p> 1.3 GUM規(guī)定測量不確定度定義</p><p><b> 測量不確定度:</b></p><p> 一個與測量結(jié)果有關(guān)的參數(shù),用于表征(合理地附
30、屬于被測量的)值的離散性。</p><p> 注1:此參數(shù)可以是,例如標(biāo)準(zhǔn)偏差(或其倍數(shù)),或一個規(guī)定的置信區(qū)間的半寬度。</p><p> 注2:測量不確定度一般由許多分量組成。其中一些分量可以通過評定來自一組測量結(jié)果的統(tǒng)計分布得到,采用實驗標(biāo)準(zhǔn)偏差表征;而另一些也可以采用標(biāo)準(zhǔn)偏差表征,可以通過評定來自依據(jù)實驗或其它信息假設(shè)的概率分布得到。</p><p>
31、 注3:應(yīng)該這樣理解測量結(jié)果:它是被測量的最佳估計值,所有的不確定分量(包括同修正和參比標(biāo)準(zhǔn)有關(guān)的分量)系統(tǒng)影響引入的離散性。</p><p> 本定義是一個可操作性定義,它把注意點集中在測量結(jié)果和它被評定的不確定度。盡管它與其它測量不確定度概念并不矛盾,例如:</p><p> * 當(dāng)提供一個測量結(jié)果時,它是被測量估計值中可能引入的誤差的尺度。</p><p>
32、; * 表征測量值離散范圍的估計值,被測量的真值落在這個范圍內(nèi)。(VIM1984年第1版)</p><p> 雖然在理想條件下,這兩個傳統(tǒng)的概念是有效的。但是,它把注意點集中在未知量:測量結(jié)果的誤差和被測量的真值(而不是估計值)。 </p><p> 1.4 評定和表示不確定度的程序摘要:</p><p> 1.4.1 被測量Y和輸入量X之間的數(shù)學(xué)表達(dá):Y
33、 = f (X1,X2, XN)。函數(shù)f 應(yīng)包含每一個能顯著性提供不確定度分量給測量結(jié)果的量,包括所有的修正值和修正系數(shù)(見第4.1.1和4.1.2條)。</p><p> 1.4.2 依據(jù)統(tǒng)計分析一組觀察值或其它方法,輸入量Xi的估計值xi(見第4.1.3條)。</p><p> 1.4.3 評定每一個輸入估計值xi的標(biāo)準(zhǔn)不確定度U(xi),對于從統(tǒng)計方法獲得的輸入估計值,標(biāo)準(zhǔn)不
34、確定度按4.2條(標(biāo)準(zhǔn)不確定度A類評定)規(guī)定評定。對于從其它方法獲得輸入估計值,標(biāo)準(zhǔn)不確定度U(xi)按4.3條(標(biāo)準(zhǔn)不確定度B類評定)規(guī)定評定。</p><p> 1.4.4 評定同任何輸入有關(guān)的協(xié)方差按5.2條進行.</p><p> 1.4.5 計算測量結(jié)果,即被測量Y的估計值y,從函數(shù)關(guān)系式f中,以Xi來估計第2步中獲得的xi(見4.1.4條)。</p><
35、p> 1.4.6 依據(jù)標(biāo)準(zhǔn)偏差和協(xié)方差(第5章中規(guī)定),確定測量結(jié)果確y的合成不確定度Uc(y);如果有多于一個輸出量是不獨立的,計算協(xié)方差(見第7.2.5條、H.2、H.3、H.4)。 </p><p> 1.4.7 如果必須給出擴展不確定度U,其目的是一個區(qū)間y + U到y(tǒng) - U,在這個區(qū)間里,合理分配給被測量Y的值,以大的分布數(shù)落在這個區(qū)間里。以Uc(y)乘一個包含因子k ,所以U=k Uc(
36、y),典型的包含因子為2或3。選擇包含因子的依據(jù)是要求的置信區(qū)間(見6.2、6.3條和附錄G)。</p><p> 1.4.8 報告測量結(jié)果y和合成標(biāo)準(zhǔn)不確定度Uc(y)或擴展不確定度U(見第7章)。 </p><p> 1.5 從哲學(xué)上來理解測量不確定度的概念</p><p> 從哲學(xué)上講,人類對宇宙中可以量化現(xiàn)象的認(rèn)識和探索都是通過感覺、知覺來獲得的,這種
37、感覺從廣義上來講,是測量:一是直接感官上測量(通過眼睛、鼻子、耳朵、舌頭和觸覺)來確認(rèn)被測量的對象(可以量化的現(xiàn)象);二是通過感官的延伸—測量儀器、裝置來確認(rèn)被測量的對象(可以量化的現(xiàn)象)。要注意的是:測量是通過外表的現(xiàn)象去獲得現(xiàn)象所表現(xiàn)出來性質(zhì)(例如:物理性質(zhì)、化學(xué)成分、工程性質(zhì)、感官性質(zhì)、分子生物學(xué)性質(zhì)等),來確定這一個現(xiàn)象的本質(zhì)。例如對物體形態(tài)的研究,長期以來認(rèn)為只有三種,固體、液體和氣體,現(xiàn)在獲得了第4種狀態(tài)(等離子態(tài)?)。&l
38、t;/p><p> 對于每一類測量,都分定性和定量兩種。并且需要確定測量程序(即共同的測量方法、步驟)。目的是要求對于同一個量,不同的人員、在不同的時間、空間,應(yīng)該獲得一致性的結(jié)論,要達(dá)到這一點需要三個方面的條件:</p><p> * 對現(xiàn)象本質(zhì)理解的一致性:也就是說,需要對表征被測對象的特性(即,反映現(xiàn)象本質(zhì)的特性),具有科學(xué)合理的解釋,這就是測量原理。例如:利用金屬在負(fù)荷下變形正比于
39、負(fù)載的虎克定律制作負(fù)荷傳感器測量物體的重量(質(zhì)量)。這是屬于科學(xué)層次的。當(dāng)然,對現(xiàn)象本質(zhì)的理解是隨著科學(xué)水平的發(fā)展而不斷發(fā)展、不斷深入的;例如:</p><p> * 獲得被測對象量值的技術(shù)手段:規(guī)定測量系統(tǒng)(包括測量儀器、附屬設(shè)施)技術(shù)要求、確定測量的條件要求(包括環(huán)境條件和對干擾量的控制要求)、認(rèn)定檢測人員的資格水平等。這是屬于技術(shù)層次的。</p><p> * 獲得被測對象量值的
40、經(jīng)驗:直覺,不需要經(jīng)過實踐證明的直覺。</p><p> 由于對現(xiàn)象的解釋是逐步科學(xué)化的(也就是說,不可能真正的科學(xué)化,這是一個特定歷史階段人類對宇宙的認(rèn)識的反映,這是造成對測量定義不完整的原因)對長度的測量就是一個例子);又由于技術(shù)不可能充分完善(這是造成測量方法不完善的原因);從而作為經(jīng)驗“附屬物”的直覺常常在測量中起著愈來愈重要作用。例如:定量測量中,經(jīng)驗豐富的老車工加工零件時,通過對在加工中引起變形因素
41、的了解,能在準(zhǔn)確度為0.02mm等級的車床上加出準(zhǔn)確度為0.001mm的工件;在定性識別中,直覺所起的作用更是無法估量。</p><p> 因此,在測量中提被測量的真值</p><p> 第2章 測量不確定度預(yù)備知識(定義)</p><p><b> 2.1 測量</b></p><p> JJF1001-199
42、8;VIM:1993;GB/T19022-2003/ISO10012:2000;( 3.2測量過程)</p><p> 以確定量值為目的的一組操作。</p><p><b> 共有6個要素:</b></p><p><b> (1)測量原理</b></p><p> ?。?)測量主體(操作人員
43、)</p><p> ?。?)測量客體(測量設(shè)備和附屬設(shè)施)</p><p> (4)測量控制條件(環(huán)境條件)</p><p><b> ?。?)測量步驟</b></p><p> ?。?)被測量(可以量化的現(xiàn)象)</p><p> 2.2 測量原理:測量的科學(xué)基礎(chǔ)</p>&
44、lt;p><b> 例子:</b></p><p> (1)應(yīng)用于溫度測量的熱電效應(yīng);</p><p> ?。?)應(yīng)用于速度測量的多普勒效應(yīng);</p><p> ?。?)應(yīng)用于電位差測量的約瑟夫森效應(yīng);</p><p> ?。?)應(yīng)用于分子振動波數(shù)測量的喇曼效應(yīng);</p><p> ?。?/p>
45、5)應(yīng)用于長度測量的光柵效應(yīng);</p><p> (6)應(yīng)用于長度(位移)測量的電容(電感)效應(yīng);</p><p> ?。?)應(yīng)用于力測量的虎克效應(yīng);</p><p> ?。?)應(yīng)用于電勢測量的霍爾效應(yīng)。</p><p> (9)應(yīng)用于識別和測量物質(zhì)原子的質(zhì)譜法:利用不同質(zhì)荷比的離子通過電磁場中偏轉(zhuǎn)不同的效應(yīng)(粒子質(zhì)量小、帶電荷量多,偏轉(zhuǎn)
46、大;反之,則偏轉(zhuǎn)?。?,將不同的原子區(qū)分開來,并定量確定其的量值大?。?lt;/p><p> ?。?0)應(yīng)用光譜吸收(或反射)效應(yīng)識別和測量物質(zhì)分子。利用不同物質(zhì)分子對單色光的吸收(或反射)不同的效應(yīng)來識別和測量物質(zhì)的分子:以單色光透射過被測試樣(液體)時,由于不同物質(zhì)的分子對其吸收能力不同,所以可以以比值(透射通量/入射通量)判斷物質(zhì)分子的特征;以單色光照射到被測試樣(固體)表面時,由于不同物質(zhì)的分子對其反射能力不同
47、,所以可以以比值(反射通量/入射通量)判斷物質(zhì)分子的特征;(當(dāng)然需要建立測量基準(zhǔn)的標(biāo)準(zhǔn)樣品來定基點)</p><p> ?。?1)應(yīng)用色譜(氣相GC、液相LC)效應(yīng)來分離、確認(rèn)物質(zhì)。當(dāng)含有不同物質(zhì)組份的混合物在流動相推動下經(jīng)過固定相時,由于混合物中不同組分的物質(zhì)在性質(zhì)上和結(jié)構(gòu)上的差異,所以與固定相相互作用的能力就存在差異。由于推動力不變,所以不同組份在流經(jīng)固定相時,滯留的時間就不同,這時只要檢測出從固定相處流出的
48、時間先后順序,就能將混合物中不同的組份區(qū)分開來。計算公式如下:</p><p> R = 2*( tR1 – tR2 )/ W1 + W2</p><p> 公式中: R:分離度;</p><p> tR1:第1組份物質(zhì)滯留的時間;</p><p> tR2:第2組份物質(zhì)滯留的時間;</p><p> W1:
49、第1組份的峰寬;</p><p> W2:第2組份的峰寬。</p><p> 峰寬愈窄,滯留時間差愈長,分離度R就愈大。</p><p> ?。?2)應(yīng)用核磁共振效應(yīng)來識別和測量不同物質(zhì)的原子。當(dāng)原子核在磁常中運動時,吸收到某一頻率的射頻時,會產(chǎn)生共振現(xiàn)象。</p><p> ?。?3)約瑟夫森結(jié)效應(yīng)確定電壓;公式如下:</p>
50、;<p> V = n*(h/2e)*f</p><p><b> 公式中:V:結(jié)電壓</b></p><p> n:結(jié)的數(shù)目( n = 1,2,3……)</p><p><b> h:普朗克常數(shù)</b></p><p><b> e:電子的電荷</b>
51、</p><p> f:外加交流射頻信號的頻率</p><p> K = 2e/h = 483597.9MHz/V </p><p> 2.3 測量方法:進行測量時所用的、按類別敘述的一組操作邏輯次序。</p><p> ?。↗JF1001-1998 第4.5條 ,VIM:1993 第2.4條)</p><p>
52、 注意:這里的測量方法不是通常所稱的測量方法(method of measurement),通常所稱的測量方法實際上是檢測方法 ISO/IEC 2 《標(biāo)準(zhǔn)化、認(rèn)證和實驗室認(rèn)可的一般術(shù)語及其定義》中第3.9條:檢測方法(testing method) 為測定材料或產(chǎn)品的一種或多種特性所采用的技術(shù)方法。 </p><p> 測量方法可以按各種方式被劃分,如:</p><p> ?、偬娲ǎ?/p>
53、稱重中應(yīng)用;</p><p><b> ?、谖⒉罘ǎ?lt;/b></p><p> ?、哿阄环ǎ夯菟诡D電橋中應(yīng)用。</p><p> 2.4 測量程序:進行特定測量時所用的、根據(jù)給定的測量方法具體敘述的一組操作。</p><p> ?。↗JF1001-1998 第4.6條 ,VIM:1993 第2.5條)</p>
54、;<p> 注意:測量程序(有時也稱測量方法measurement method)通常記錄在文件中,并且足夠詳細(xì),以便使操作人員進行測量時不再需要補充資料。</p><p> 因此,測量程序是檢測方法的細(xì)化,而不是測量方法的細(xì)化?。?!不過,在實際工作中,尤其是文字技術(shù)標(biāo)準(zhǔn)中的方法標(biāo)準(zhǔn)(或試驗方法)均指檢測方法。</p><p> 2.5 測量過程:與某一給定量有關(guān)的全部
55、信息、設(shè)備和操作。</p><p> 注:次概念包含與測量性能和測量質(zhì)量(品質(zhì))有關(guān)的一切方面:例如原理、方法、程序、影響量的值和測量標(biāo)準(zhǔn)。 </p><p> 此定義與GB/T19022-2003/ISO10012:2000;第3.2條《測量過程》具有不同的概念。</p><p> 2.6 重復(fù)性條件:同一個實驗室(或同一個地點)、由同一個操作人員、采用
56、同一臺測量設(shè)備、按照同一個測量程序、對相同的被測對象,在一個短的時間內(nèi)進行互相獨立測量的條件。</p><p> ?。↖SO 3534-1;ISO指南33:2000第2.7條;VIM:1993第3.6條)</p><p> 注意:重復(fù)性條件有時也稱統(tǒng)計控制條件。</p><p> 2.7 重復(fù)性:在重復(fù)性條件下,互相獨立的測量結(jié)果之間的一致性程度。</p&
57、gt;<p> ?。?ISO 3534-1;ISO指南33:2000第2.6條;VIM:1993第3.6條)</p><p> 2.8 重復(fù)性限r(nóng):一個數(shù)值r,在重復(fù)性條件下,兩個測量結(jié)果之差的絕對值不超過此數(shù)值的概率為95%。</p><p> ?。?ISO 3534-1;ISO指南33:2000第2.9條)</p><p> 當(dāng)存在標(biāo)準(zhǔn)值μ時:
58、檢測值為y,| y - μ| ≤ 1.96 σr</p><p> 兩次獨立測量時:檢測值為y1,y2 | y - y | ≤ 2.77 σr</p><p> 2.9 復(fù)(再)現(xiàn)性條件:在不同的實驗室(或不同的地點)、由不同的操作人員、采用不同的測量設(shè)備、按照相同的測量方法、對相同的被測對象,進行測量的條件。</p><p> ?。↖SO 3534-1;IS
59、O指南33:2000第2.11條;VIM:1993第3.7條)</p><p> 2.10 復(fù)(再)現(xiàn)性:在復(fù)(再)現(xiàn)性條件下,測量結(jié)果之間的一致性程度。</p><p> ?。?ISO 3534-1;ISO指南33:2000第2.10條;VIM:1993第3.7條)</p><p> 2.11復(fù)(再)現(xiàn)性限R:一個數(shù)值R,在復(fù)(再)現(xiàn)性條件下,兩個測量結(jié)果之差
60、的絕對值不超過此數(shù)值的概率為95%。</p><p> ( ISO 3534-1;ISO指南33:2000第2.12條)</p><p> 當(dāng)存在標(biāo)準(zhǔn)值μ時:檢測值為y,| y - μ| ≤ 1.96 σR</p><p> 兩次獨立測量時:檢測值為y1,y2,| y1 - y2 | ≤ 2.77 σR</p><p> 2.12 系
61、統(tǒng)誤差:在重復(fù)性條件下,對同一被測量進行無限多次測量所獲得的結(jié)果的平均值,與被測量的真值之差。</p><p> 系統(tǒng)誤差 = 平均值 -(約定)真值 </p><p> (VIM:1993第3.14條)</p><p> 2.13. 隨機誤差:在重復(fù)性條件下,單個測量結(jié)果與對同一被測量進行無限多次測量所獲得的結(jié)果的平均值之差。</p><
62、;p> 隨機誤差 = 測量結(jié)果 - 平均值 </p><p> ?。╒IM:1993第3.13條)</p><p> 2.14 測量誤差:測量結(jié)果減去被測量的(約定)真值。</p><p> 測量誤差 = 測量結(jié)果 – (約定)真值</p><p> = 隨機誤差 + 平均值 + 系統(tǒng)誤差 - 平均值</p>
63、<p> = 隨機誤差 + 系統(tǒng)誤差 </p><p> (VIM:1993第3.10條)</p><p> 2.15 測量結(jié)果:由測量獲得的、賦予被測量的值。</p><p> 注意:獲得測量結(jié)果一般需要三步:</p><p> * 獲得觀察值(或稱測量列):直接從儀器示值裝置上讀到的值;</p><
64、p> * 獲得測定值:通過運算、修正得到的值;</p><p> * 對測定進行統(tǒng)計檢驗、計算獲得的值(應(yīng)包括測量不確定度評定)。</p><p> 2.16 估計:根據(jù)樣本推斷總體分布的未知成分,例如參數(shù)。</p><p> ?。↖SO3534-1;ISO指南33第2.17條)</p><p> 2.17 估計值:根據(jù)樣本觀察
65、值,對估計量的計算結(jié)果。</p><p> ?。↖SO3534-1;ISO指南33第2.18條)</p><p> 2.18估計量:用以估計總體分布未知量的統(tǒng)計量。</p><p> ?。↖SO3534-1;ISO指南33第2.19條)</p><p> 第3章 三個數(shù)學(xué)模型</p><p> 3.1 測量的統(tǒng)計
66、數(shù)學(xué)模型</p><p> 3.1.1 測量的統(tǒng)計數(shù)學(xué)模型建立</p><p> 從上述預(yù)備知識可知:測量結(jié)果中包含有隨機誤差、系統(tǒng)誤差和(約定)真值;又根據(jù)ISO5725-1的規(guī)定:系統(tǒng)誤差分為實驗室引入的系統(tǒng)誤差和檢測方法引入的系統(tǒng)誤差;一般單個測量結(jié)果可以采用如下數(shù)學(xué)模型表示:</p><p> X = μ + δ + β + ε</p>
67、<p><b> 這里:</b></p><p><b> X:表示測量結(jié)果;</b></p><p> μ:表示被測量的(約定)真值; </p><p> δ:表示測量方法(測量原理不科學(xué))引入的系統(tǒng)誤差;</p><p> β:表示實驗室實施測量方法不一致(復(fù)現(xiàn)性條件規(guī)定)引
68、入的系統(tǒng)誤差;</p><p> ε:表示測量方法要求控制條件不完善(重復(fù)性條件規(guī)定)引入的隨機誤差。</p><p> 根據(jù)ISO5725-1的規(guī)定:</p><p> * 在一個實驗室內(nèi),當(dāng)測量在重復(fù)性條件下進行時,所獲得的一組測定值符合正態(tài)分布,通過對這組服從正態(tài)分布的測定值統(tǒng)計計算,獲得的實驗室內(nèi)標(biāo)準(zhǔn)偏差Sr就把ε統(tǒng)計進去了。各個實驗室在實施測量方法時
69、,由于儀器設(shè)備、操作人員、實驗室環(huán)境條件等差異引入的系統(tǒng)誤差,則可以通過對所獲得的各種信息加以評定(實際上,就是B類測量不確定度的評定依據(jù))。當(dāng)然,也可以采用多個實驗室合作研究(或能力驗證試驗、聯(lián)合定值)把它統(tǒng)計出來。</p><p> * 在多個實驗室合作研究(或能力驗證試驗、聯(lián)合定值)時,獲得的一組各個實驗室的平均值也符合正態(tài)分布;通過對這組服從正態(tài)分布的平均值統(tǒng)計計算,獲得的實驗室間平均值的標(biāo)準(zhǔn)偏差,在排
70、除其中的ε影響后,就獲得了實驗室間標(biāo)準(zhǔn)偏差SL。其中就把β統(tǒng)計進去了。</p><p> * 測量方法的測量原理不科學(xué)引入的系統(tǒng)誤差δ是對影響被測量因素不了解產(chǎn)生的,也就是說:它受限于科學(xué)技術(shù)的發(fā)展水平。但是,科學(xué)技術(shù)發(fā)展是沒有窮盡的,所以δ是無法完全消除的,有二種方法可以解決這個問題:一是使δ最小化,確保與SL相比可以忽略不計;二是使其專業(yè)化(今適用于特定專業(yè)標(biāo)準(zhǔn)測量方法),確保所有的檢測結(jié)果中均引入這么一個
71、δ。</p><p> 3.1.2 測量統(tǒng)計數(shù)學(xué)模型參數(shù)的計算</p><p> 假設(shè):由j個實驗室(j = 1,2 ,3,……P)進行實驗室合作研究,每個實驗室在重復(fù)性條件下獲得i個數(shù)據(jù)(I = 1,2,3,…… n),共獲得X I j。</p><p><b> 計算求得:</b></p><p> 每個實驗
72、室內(nèi)的標(biāo)準(zhǔn)偏差Si :</p><p> Si2 = Σ(X i j -- X . j)2 /( n – 1) </p><p> 實驗室內(nèi)重復(fù)性標(biāo)準(zhǔn)偏差Sr :</p><p> Sr2 =Σ Si2 /P</p><p> 實驗室間標(biāo)準(zhǔn)偏差SL:</p><p> S 2L = S 2r -- S
73、r2 1/n </p><p> 復(fù)現(xiàn)性標(biāo)準(zhǔn)偏差SR:</p><p> S2R = S2L + Sr2</p><p> = S 2r + Sr2 (n – 1)/n</p><p> 其中:實驗室內(nèi)重復(fù)性標(biāo)準(zhǔn)偏差表征隨機誤差ε;實驗室間標(biāo)準(zhǔn)偏差表征系統(tǒng)誤差β;測量方法原理引入的系統(tǒng)誤差無法找到!采用一個特定的測量
74、方法測量獲得的結(jié)果內(nèi)包含有這三類誤差,由于采用同一種測量方法,所以不同實驗室測量獲得數(shù)據(jù)的水平高低(即克服隨機誤差ε和系統(tǒng)誤差β的能力完全由復(fù)現(xiàn)性標(biāo)準(zhǔn)偏差表征。</p><p> 3.2 測量的數(shù)學(xué)模型</p><p> 根據(jù)測量的定義,測量結(jié)果(量值)的獲得是所有輸入量綜合效應(yīng)的結(jié)果。所以,輸出量(測量結(jié)果)Y就是所有輸入量X1, X2,……X N函數(shù),采用如下數(shù)學(xué)模型表示:
75、 </p><p> Y = f ( X1, X2,……X N ) </p><p> 很明顯,每個輸入量X i不斷變化著的、不確定的。這在現(xiàn)代各個專業(yè)檢測技術(shù)領(lǐng)域是非常普遍的現(xiàn)象。例如:在一個標(biāo)準(zhǔn)測量方法中,規(guī)定溫度變化的范圍為(25±1)℃,因此溫度是該測量中影響輸出量Y的一個輸入量。當(dāng)每次測量時,輸入量溫度在測量方法規(guī)定控制的范圍內(nèi)變化,但卻又是不知道的(或更
76、明確地說是不確定的);因此,所對應(yīng)的輸出量Y也是不確定的,并且正比于它的靈敏度系數(shù)C i,</p><p> C i = ΔY/ΔX i。</p><p> 例子:如果采用依賴于溫度的電阻端點,在規(guī)定溫度t0它的電阻為R0,它的線溫度系數(shù)是α,兩端的電勢是V。被測量的功率P依據(jù)V、R0、α和t表示如下:</p><p> P = f (V,R0,t ,α)
77、= V 2/ R0[1+ α(t - t0 )]</p><p> 3.3 測量不確定度傳播律</p><p> Uc2(y) = [Δf/Δx1] 2 U2 (x1) + [Δf/Δx2]2 U2 (x2) + [Δf/Δx3] 2U2 (x3) +</p><p> ……[Δf/ΔxN] 2 U(xN) 2</p><p> 測
78、量不確定度的計算方法:</p><p> 假設(shè):存在N個輸入量,i = 1,2, 3, ……N</p><p> 每個輸入量獲得n個數(shù)據(jù),K = 1,2,3,……n</p><p> 將測量數(shù)學(xué)模型展開如下:</p><p> Y1 X1,1 X2,1 X3,1 ……Xi,1 …… XN,1<
79、/p><p> Y2 X1,2 X2,2 X3,2 ……Xi,2 …… XN,2</p><p> Y3 X1,3 X2,3 X3,3 ……Xi,3 …… XN,3</p><p> YK X1,K X2,K X3,K……Xi,,K……XN,K</p&
80、gt;<p> Yn X1,n X2,n X3,n……Xi,n …… XN,n</p><p> 計算出平均值(以小寫字母表示):</p><p> y x1 x2 x3 xi xN</p><p> 計算出標(biāo)準(zhǔn)不確定度:</p>
81、<p> U2(Y) U2(X1,) U2(X2) U2(X3) U2(Xi) U2(XN)</p><p> 計算出各自的靈敏度系數(shù):</p><p> C1 C2 C3 Ci CN</p><p> 第一種計算方法為直接求Y的平均值(以y表示)和標(biāo)準(zhǔn)
82、偏差:</p><p> y = 1/nΣYK</p><p> S2(Y) =Σ(YK - y )2/ (n – 1)</p><p> 然后將標(biāo)準(zhǔn)偏差轉(zhuǎn)化為標(biāo)準(zhǔn)不確定度:</p><p> U2(Y) = S2(Y)</p><p> 第二種計算方法為分別求出每個輸入量的靈敏度系數(shù)和標(biāo)準(zhǔn)測量不確定度
83、,然后按不確定度傳播律計算:</p><p> xi = 1/nΣXi,K</p><p> S2(Xi) =Σ(Xi K - xi )2/ (n – 1)</p><p> U2 (Xi) = S2(Xi)</p><p> 然后按不確定度傳播律計算輸出量Y的標(biāo)準(zhǔn)不確定度:</p><p> U2(
84、Y) = C12 U2 (X1) + C2 2 U2 (X2) + C3 2U2 (X3) +</p><p> ……CN 2 U 2 (XN)</p><p> 注意:第一種方法是只考慮輸出量Y,輸入量之間什么關(guān)系不考慮,獲得一組輸出量Y K (K = 1,2,3,……n),計算平均值和相應(yīng)的標(biāo)準(zhǔn)偏差,這個標(biāo)準(zhǔn)偏差就是輸出量的標(biāo)準(zhǔn)不確定度。第二種方法是分別求出每個輸入量Xi ,K的
85、一組數(shù)據(jù)的平均值和相應(yīng)的標(biāo)準(zhǔn)偏差、靈敏度系數(shù),然后根據(jù)不確定度傳播律計算出輸出量Y的標(biāo)準(zhǔn)測量不確定度。</p><p> 例子:已知一個電阻、加在其兩端的電壓、電阻的溫度系數(shù)和測量其兩端功率時的溫度符合如下函數(shù)關(guān)系,求作為輸出量P的各個輸入量V 、R0、α、t靈敏度系數(shù) </p><p> P = V 2/ R0[1+ α(t - t0 )]</p><p>
86、; 按數(shù)學(xué)模型計算如下:</p><p><b> V的靈敏度系數(shù)為:</b></p><p> C1 = ΔP/ΔV = 2V/ R0[1+ α(t - t0 )]</p><p><b> = 2P/V</b></p><p><b> R0靈敏度系數(shù)為:</b>
87、</p><p> C2 = ΔP/ΔR = - V 2/ R02 [1+ α(t - t0 )]</p><p><b> = - P/ R0</b></p><p><b> α靈敏度系數(shù)為:</b></p><p> C3 = ΔP/Δα= - V 2(t - t0 )/ R0[1+
88、α(t - t0 )] 2</p><p> = - P(t - t0 )/[1+ α(t - t0 )]</p><p><b> t靈敏度系數(shù)為:</b></p><p> C4= ΔP/Δt = - V 2α/ R0[1+ α(t - t0 )] 2</p><p> = - Pα/[1+ α(t - t
89、0 )]</p><p> 3.4 三個數(shù)學(xué)模型之間的內(nèi)在聯(lián)系</p><p> 測量的數(shù)學(xué)模型所有影響輸出量Y的輸入因素抽象為輸入量Xi ( i = 1,2,3, N )。實際上,影響輸出量的因素從性質(zhì)上可以分為二類: </p><p> * 能夠?qū)ζ洚a(chǎn)生的影響原因完全理解、并能夠進行定量描述。也就是說:對輸入量和輸出量之間的關(guān)系可以采用數(shù)學(xué)方程加以確認(rèn)
90、,一般作為系統(tǒng)效應(yīng)出現(xiàn),這可以定義為影響量。例如:</p><p> 約瑟夫森效應(yīng)電壓:V = (nh/2e)f中的頻率f ;</p><p> 功率方程 P = V 2/ R0[1+ α(t - t0 )]中的V、R0、α和t 。 </p><p> * 找不到輸入量對輸出量影響的原因、或不能完全理解內(nèi)在的聯(lián)系、或知道原因但不能用數(shù)學(xué)方程加以描述,一般作為隨
91、機效應(yīng)出現(xiàn),常常采用控制測量條件對其加以控制,所以可以被定義為控制量。例如: </p><p> 在瀝青針入度測量中:測量時溫度、時間、針的外形尺寸等參數(shù);</p><p> 在樹流動度測量中: 測量溫度;</p><p> 羊絨纖維直徑測量中:光學(xué)顯微鏡的調(diào)節(jié)。</p><p> 在數(shù)學(xué)統(tǒng)計模型中,控制量只能通過對重復(fù)現(xiàn)(
92、或復(fù)現(xiàn)性)條件下測量的一組數(shù)據(jù)的統(tǒng)計分析,獲得控制量引入的離散性(即只能采用第一種方法計算輸出量的不確定度)。而對影響量,則既可以通過對重復(fù)現(xiàn)(或復(fù)現(xiàn)性)條件下測量的一組數(shù)據(jù)的統(tǒng)計分析,獲得影響量引入的離散性,也可以通過對每個影響量離散性的確認(rèn)來獲得該影響量對輸出量離散性的定量評定(即既可以采用第一種方法也可以采用第二種方法計算輸出量的不確定度)。</p><p> 3.5 GUM第3.4條《在實踐中的考慮》譯
93、文</p><p> 3.5.1 如果獲得測量結(jié)果的所有量是變化的(實際上就是所有輸入量是不確定的),則這個測量結(jié)果(即輸出量)的不確定度(實際上就是輸出量的變化程度)可以通過統(tǒng)計的方法進行評定。但是,由于時間和資源的限制,完全采用統(tǒng)計方法評定一個測量結(jié)果的不確定度是非常少見的。通常情況下,采用一個測量數(shù)學(xué)模型和不確定度傳播律來評定一個測量結(jié)果的不確定度。在本指南中,假設(shè)滿足這么一個條件:一個測量能夠被數(shù)學(xué)模型
94、化到測量準(zhǔn)確度要求的程度。</p><p> 3.5.2 因為數(shù)學(xué)模型可能是不完整的(即測量原理不夠科學(xué)性、測量程序不夠完善),所以隨著測量實踐的充分化,所有有關(guān)的量(輸入量)將會變化。這樣,不確定度的評定就需要依據(jù)盡可能多的觀察數(shù)據(jù)。只要有可能,應(yīng)采用根據(jù)長期定量數(shù)據(jù)建立的《經(jīng)驗測量模型》。并將采用核查標(biāo)準(zhǔn)和用來指示測量是否處于統(tǒng)計控制下的控制圖,作為獲得可靠的不確定度評定努力的一部分。數(shù)學(xué)模型要不斷地根據(jù)觀
95、察到的、證明模型是不完整的數(shù)據(jù)(包括同一個被測量獨立測定的結(jié)果)加以修正。一個設(shè)計很好的實驗?zāi)軌驑O大地促進不確定度評定的可靠性,設(shè)計實驗是測量技術(shù)的一個重要組成部分。</p><p> 3.5.3 為了決定測量系統(tǒng)是否正在合適地運行,經(jīng)常要將實驗獲得的輸出值的標(biāo)準(zhǔn)偏差和表征化測量中預(yù)測的各種測量不確定度分量合成獲得的標(biāo)準(zhǔn)偏差進行比較。這樣,僅僅只要考慮那些能夠在實驗中貢獻給輸出量變化的分量(不管是采用A類評定的
96、方法還是B類評定的方法獲得。</p><p> 注意:這種分析方法可以借助于收集那些對變化具有顯著性貢獻的分量和那些不能適當(dāng)?shù)貐^(qū)分為A類和B類的分量得到促進。</p><p> 3.5.4 在有些情況下,不需要將修正系統(tǒng)影響引入的不確定考慮在內(nèi),前提是:經(jīng)過對其引入的不確定度評定后,它貢獻給測量結(jié)果的合成不確定度不顯著。而且,如果這個修正值與合成測量不確定度相比是不顯著的,這種修正也可
97、忽略。</p><p> 3.5.5 在實踐中,特別是在法制計量學(xué)領(lǐng)域,常常發(fā)生這種情況:在采用一個測量標(biāo)準(zhǔn)檢驗一臺測量器具時,與要求的檢驗準(zhǔn)確度相比,測量標(biāo)準(zhǔn)和比較程序引入的不確定度可以忽略。</p><p> 例如:在采用一組準(zhǔn)確度很好的砝碼檢驗一臺商業(yè)稱時,因為砝碼和檢驗程序引入的不確定度小的足夠忽略,所以,這種測量引入的不確定度可以認(rèn)為是由檢驗條件下的器具(即商業(yè)稱)本身的誤差
98、所確定。</p><p> 注意:這里指出了在校準(zhǔn)儀器時,引入的不確定度分三個分量:一是測量標(biāo)準(zhǔn)引入的不確定度分量;二是校準(zhǔn)程序引入的不確定度分量;三是被校準(zhǔn)儀器本身引入的不確定度分量。</p><p> 3.5.6 通過測量獲得的被測量的估計值有時采用測量標(biāo)準(zhǔn)提供的值的單位,而不是采用相應(yīng)的SI體系單位。在這種情況下,這個估計值的不確定度幅度可能顯著地小于采用有關(guān)的SI體系單位表示的
99、值。實際上,在采用SI體系單位時,被測量已經(jīng)重新被定義為被測量的單位值和SI體系單位值的比值。(也就是說,這個比值引入兩個方面的不確定度)</p><p> 實例:采用約瑟夫森效應(yīng)標(biāo)準(zhǔn)電壓校準(zhǔn)一個高質(zhì)量的齊納電壓標(biāo)準(zhǔn)時,由于約瑟夫森效應(yīng)標(biāo)準(zhǔn)電壓是根據(jù)CIPM推薦的約瑟夫森常數(shù)約定值建立的,校準(zhǔn)過的齊納電壓標(biāo)準(zhǔn)的電壓值VS的相對合成不確定度u (VS) / VS為2*10-8;而當(dāng)VS采用SI體系單位時,u (V
100、S) / VS為4*10-7。因為這樣引入了與約瑟夫森常數(shù)SI體系單位值有關(guān)的附加不確定度。</p><p> 3.5.7 在記錄或分析數(shù)據(jù)時引入的粗大誤差能在測量結(jié)果中引入一個顯著性的未知誤差。通過對數(shù)據(jù)進行合適的評審是識別比較大的粗大誤差的方法,但是,由于小的粗大誤差可能被小的隨機誤差掩蓋而不顯著,測量不確定度不能將其區(qū)分開來。</p><p> 3.5.8 雖然本指南提供了一個評
101、定不確定度的框架.但是它不能代替思維上的批判、智力上的誠實和專業(yè)上的技術(shù)。不確定度的評定既不是日常工作,也不是純粹數(shù)學(xué)工作,它需要對測量和被測對象知識的充分理解。所以,引用一個測量結(jié)果的不確定度的質(zhì)量和效用最終依賴于對貢獻給測量結(jié)果的那些不確定度分量的理解、分析批判和整體性把握。</p><p> 第4章 測量不確定度評定(A類)</p><p> A類評定和B類評定僅僅是一種確定測量
102、結(jié)果離散性的、共同約定的方法,正如原來采用最大允許誤差作為確定測量結(jié)果離散性的方法一樣。A類評定強調(diào)測量的實踐性(屬于實證科學(xué)范疇),即:對一個可以量化現(xiàn)象的確定只能來自實際測量,對實際測量獲得的一組數(shù)據(jù)進行分析、檢驗、計算確認(rèn)后,才可以將其賦予該現(xiàn)象。B類評定強調(diào)的是輸入量的離散性對輸出量離散性的傳遞方式問題,即:可以通過統(tǒng)計測量獲得的數(shù)據(jù),直接把一個特定輸入量的不確定度統(tǒng)計到輸出量的不確定度中(這是A類評定);也可以通過以前測量獲得
103、的一個特定輸入量的不確定度信息,通過確定其分布來評定其在輸出量不確定度所占的分量。需要注意的是,這里的“以前測量獲得的一個特定輸入量的不確定度信息”含義是指:它在以前作為輸出量,或者是通過測量獲得A類測量不確定度;在本測量中作為已知信息,不需要重復(fù)評定;或者是長期積累的經(jīng)驗,在本次測量中作為已知信息,不需要重復(fù)評定。同樣的情況,可以向前無限制的推理,即:這個輸入量是前一次測量的輸出量,前一次測量的輸入量又是更前一次測量的輸出量……所以,
104、在不同的測量中,A類不確定度和B類不確定度是可以互相轉(zhuǎn)換的。</p><p><b> 4.1 基本方法</b></p><p> 在大多數(shù)情況下,在相同的條件下測量時,由于測量是在不同時間和空間進行,所以輸入量是不斷地隨機變化的,所以輸出量Y也是隨機變化的。如果由此獲得一組測量數(shù)據(jù)q K ( K = 1,2,3, n ) 則按數(shù)學(xué)理論確定,這個量q期望的最佳
105、估計值(或期望值)μK是n個獨立觀察值q K 的算數(shù)平均值。計算公式如下:</p><p> q = 1/ nΣq K </p><p> 當(dāng)來自N個輸入量的每一個輸入量Xi均有n個獨立觀察值Xi,,K時,可以按上述公式求出每一個輸入量的平均值xi和相應(yīng)的實驗方差S2(Xi)。</p><p> 注意:當(dāng)這些平均值和實驗方差不是通過觀察值獲得時,則應(yīng)采用
106、B類評定方法獲得。</p><p> 計算方差的公式如下:</p><p> S2(q K) = 1/ (n – 1)Σ (q K - q )2</p><p> 如果采用X來代表q,就可以計算出每一個輸入量Xi 的方差S2(Xi), 再計算出相應(yīng)的標(biāo)準(zhǔn)偏差和靈敏度系數(shù)后,按照測量不確定度傳播律加以合成就可以獲得輸出量的A類標(biāo)準(zhǔn)測量不確定度。</p
107、><p><b> 實例: </b></p><p> 如果采用Y來代表q,就可以按獲得的輸出量Y的一組觀察值YK (K = 1,2,3,n )計算出Y的方差S2(YK),就可以獲得輸出量的A類標(biāo)準(zhǔn)測量不確定度U(Y)。</p><p><b> 實例:</b></p><p> 4.2 按
108、統(tǒng)計數(shù)學(xué)模型解釋Sp的本質(zhì)</p><p> 若采用一個核查標(biāo)準(zhǔn)作為被測量,來評定一個測量過程時,進行(或改為參加評定的實驗室的個數(shù);或同一個實驗室中不同的設(shè)備、人員數(shù))j次核查(j = 1,2,3, P),每次核查是在相同的條件下獨立進行i次測量(i = 1,2,3, n)。共獲得X i,j個觀察值。則按照A類不確定度評定的方法,先分別計算出每次核查的實驗方差S2 j(j = 1,2,3, P),然后計算出P
109、次核查的平均實驗方差S2p,計算公式如下:</p><p> S2j = 1/(n – 1)Σ (Xi j –X. j ) 2</p><p> S2p = 1/PΣS2 j </p><p> Sj代表每次核查時標(biāo)準(zhǔn)偏差,為測量過程(包括實驗室)重復(fù)性標(biāo)準(zhǔn)偏差,表征的是統(tǒng)計數(shù)學(xué)模型中的隨機誤差ε;不同的Sj代表每次核查的標(biāo)準(zhǔn)偏差,它們之間的差異代
110、表了每次核查時測量過程(包括實驗室)隨機性系統(tǒng)誤差β的差異;如果這種差異不大,可取平均方差S2p 代表測量過程(包括實驗室)重復(fù)性標(biāo)準(zhǔn)偏差,來表征統(tǒng)計數(shù)學(xué)模型中的隨機誤差ε。如果差異超過一定的限值(例如科克倫檢驗或Mandel的k檢驗),則確認(rèn)這個測量過程(包括實驗室)克服隨機誤差ε的能力不穩(wěn)定。這時候就要檢查測量過程是否有效(包括設(shè)備、人員、環(huán)境條件、操作步驟等)?</p><p> 這就是核查的目的:確認(rèn)
111、測量時的設(shè)備、人員、環(huán)境條件和操作步驟是否有問題?也可以看出:這是統(tǒng)計數(shù)學(xué)模型的具體應(yīng)用。</p><p><b> 4.3 綜述</b></p><p> A類不確定度的優(yōu)點是:不需要知道每個輸入量引入不確定度的因素內(nèi)在本質(zhì),也不需要知道它對輸出量影響的數(shù)學(xué)函數(shù)關(guān)系,只需要通過實際測量獲得的數(shù)據(jù),就可以把這些影響引入的不確定度全部統(tǒng)計進去。缺點是:單個實驗室重復(fù)
112、性測量才能統(tǒng)計出ε,多個實驗室復(fù)現(xiàn)性測量才能統(tǒng)計出ε和β,并且需要多次獨立的重復(fù)性測量,或復(fù)現(xiàn)性測量,所需資源不容易獲得。因此,在資源不能滿足獲得A類不確定度時,可以考慮采用B類不確定度評定。</p><p> 第5章 測量不確定度評定(B類)</p><p> 5.1 B類測量不確定度的定義</p><p> 采用不同于對觀察列進行統(tǒng)計分析的方法,來評定標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 測量不確定度實例
- 測量不確定度評定實例
- 砝碼測量不確定度評定
- 測量不確定度案例分析
- jjf1059.1-2012測量不確定度評定與表示培訓(xùn)講義
- 測量系統(tǒng)不確定度評定.pdf
- 測量不確定度評估和報告
- 測量不確定度評定及應(yīng)用
- 測量不確定度管理程序
- 測量不確定度評定及應(yīng)用
- 扭矩扳子測量不確定度評定
- 測量不確定度評定及應(yīng)用
- 非自動衡器測量不確定度評定
- 測量金屬拉伸強度不確定度-1
- 測量不確定度評定的簡化應(yīng)用
- 測量不確定度基礎(chǔ)知識試卷
- 水中cod測量不確定度的評定
- 拉伸試驗測量結(jié)果不確定度評定
- 引伸計測量結(jié)果不確定度評定
- 計量標(biāo)準(zhǔn)考核與測量不確定度
評論
0/150
提交評論