版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、湘潭大學(xué)碩士學(xué)位論文基于生物激勵(lì)機(jī)制的算法研究姓名:彭琰申請(qǐng)學(xué)位級(jí)別:碩士專(zhuān)業(yè):控制理論與控制工程指導(dǎo)教師:鄭金華20070501II ABSTRACT The nature is our source of solving various problems. For hundreds of years, it is proved that it is a successful way that use solutions which
2、provided by biology to solve practical problems. Now biology simulation has been a part of computer science. Many optimization algorithms based on biology prompting appear. For example, Genetic Algorithm, Artificial Immu
3、ne Systems, Ant Colony Optimization, Particle Swarm Optimization, Artificial Neural Network, Culture Algorithm, etc. These algorithms learning from life phenomenon mimic the behavior, function and characteristic of life
4、system. Now they have been widely applied in many other areas and multi-objective optimization problems. Population-based genetic algorithm is a kind of random searching method using evolutionary theory and genetic theor
5、y. Particle Swarm Optimization Algorithm is such a new optimization method which is inspired by social behavior of bird flocking or fish schooling. It is a population-based, self-adaptive search optimization technique.
6、This paper gives the researchs on the above two algorithms in single-objective, and applys genetic algorithm to multi-objective optimizations. We improve the A Restricted Genetic Algorithm based on Ascending of Tangent P
7、lanes. Multi-parent fitness-weighted crossover is adopted to improve the algorithm’s ability of global search. The experiment indicates that the improved algorithm can solve more complicated multi-variant and multi-modal
8、 problems. Particle Swarm Optimization is combined with genetic operator (crossover and mutation). So it could escape from the local optima. Compared with standard Particle Swarm Optimization in four typical test functio
9、ns, results show that our algorithm has potential to find a better solution.In multi-objective optimization, we describe A Fast Genetic Multi-objective Algorithm based on Random Operator. Arena’s Principle (AP) is used t
10、o construct the nondominated set so quicken the running efficiency. Random Operator is used to construct next population. Experiment results in different dimensions indicate that it has a better distributing than NSGA2,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于EVA的薪酬激勵(lì)機(jī)制研究.pdf
- 基于公平偏好的激勵(lì)機(jī)制研究.pdf
- 基于激勵(lì)理論的企業(yè)激勵(lì)機(jī)制初探
- 基于CPN的BitTorrent協(xié)議激勵(lì)機(jī)制研究.pdf
- 激勵(lì)機(jī)制研究
- 基于eva的企業(yè)薪酬激勵(lì)機(jī)制研究
- 激勵(lì)機(jī)制
- 基于eva的企業(yè)薪酬激勵(lì)機(jī)制研究
- 基于績(jī)效管理的酒店激勵(lì)機(jī)制研究
- 基于公平偏好理論的激勵(lì)機(jī)制研究
- 激勵(lì)機(jī)制
- 基于知識(shí)管理的組織激勵(lì)機(jī)制研究.pdf
- 基于EVA的股票期權(quán)激勵(lì)機(jī)制研究.pdf
- 基于委托代理的稅收激勵(lì)機(jī)制研究.pdf
- 基于知識(shí)創(chuàng)新的企業(yè)激勵(lì)機(jī)制研究.pdf
- 基于績(jī)效管理的酒店激勵(lì)機(jī)制研究
- 質(zhì)量激勵(lì)機(jī)制的研究.pdf
- 認(rèn)罪激勵(lì)機(jī)制研究.pdf
- 基于實(shí)例的高校教師激勵(lì)機(jī)制研究.pdf
- 基于勝任力的TS公司激勵(lì)機(jī)制研究.pdf
評(píng)論
0/150
提交評(píng)論