周期序列復(fù)雜度的分布.pdf_第1頁
已閱讀1頁,還剩106頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、流密碼學(xué)是一個古典的課題.近十年來,對序列密碼的研究一直比較熱門.自90年代以來,國內(nèi)的學(xué)者如丁存生,肖國鎮(zhèn),魏仕民,戴宗鐸開展了這方面的研究工作,丁存生的主要工作包括對特定周期序列的模式分布的研究,肖國鎮(zhèn)老師的工作主要是針對特定周期序列如N=2pv周期的周期序列的線性復(fù)雜度快速算法的研究,魏仕民的工作包括對特定周期的周期序列的k錯線性復(fù)雜度快速算法的研究;戴宗鐸老師的工作包括對周期序列的擾動(如添加,刪除)后序列線性復(fù)雜度的變化情況,

2、以及一般情形下的隨機周期序列的線性復(fù)雜度的期望,方差. 國外學(xué)者Niederreiter很早就開始了有關(guān)序列復(fù)雜度的研究工作,對于特定長度的,特定周期的序列的線性復(fù)雜度有很多的估計結(jié)果,尤其是給出了周期序列的線性復(fù)雜度的分布,線性復(fù)雜度與k錯線性復(fù)雜度之間的關(guān)系;Meidl對于隨機周期序列的k錯線性復(fù)雜度的統(tǒng)計性質(zhì),包括期望的界有了很多的研究結(jié)果.在研究周期序列線性復(fù)雜度,k錯線性復(fù)雜度快速算法方面,早期的工作包括Games和C

3、hsq,1983)的工作,對于N=2v的周期序列給出了一種快速算法,大大優(yōu)于原先的Berlekamp-Massey算法.接著M.StampandC.F.Martin提出了N=2v的周期序列k錯線性復(fù)雜度的算法,于是后面引發(fā)了一系列的研究,通過探詢內(nèi)在的代數(shù)結(jié)構(gòu),找到遞歸算法的依據(jù),現(xiàn)在對于N=2n,N=pb,N=2pv的周期序列都有了類似的快速計算的方法.此外,還有一些其他的工作,比如K.Kurosawa,F.Sato,T.Sakata

4、,和W.Kishimoto的工作,得到了在特定周期N=2v,pv的周期序列的線性復(fù)雜度發(fā)生最小跳變的錯誤值.比如Alan.G.B.LauderandKenneth.G.Paterson的工作,給出一種高效算法得到二元周期序列線性復(fù)雜度的錯誤譜并用于Reed-Muller碼的譯碼中. 說到這里,要談一談對研究序列的性質(zhì)的原始動機.筆者對序列的興趣并不是從密碼學(xué)意義角度來的.當(dāng)時筆者2002年在微軟亞洲研究院實習(xí)的時候,碰到了一個問

5、題:有一個研究小組用極長序列(MaximalLengthSequence)折疊后來進行定位,直觀的說,因為極長序列的冗余很大,這樣做可以用比較少的比特來實現(xiàn)定位.但是有這么一個問題,如果出錯了怎樣解決?筆者試圖從編碼理論的角度解決這樣的問題,但是沒有想到這個問題的難度會很大,這涉及到序列的穩(wěn)定性的問題.國外曾經(jīng)有這樣的工作,試圖從線性復(fù)雜度的圖象變化來進行判斷,這種線性復(fù)雜度的躍遷或者是幅度的變化可以給錯誤提供一定的判斷信息,從而進行糾

6、錯.這樣的問題引發(fā)了筆者的思考,究竟序列的穩(wěn)定性是怎么進行度量和判斷的?興趣引起了對序列復(fù)雜度性質(zhì)的研究.于是發(fā)現(xiàn)國內(nèi)國外有一些這方面的研究工作,特別是對序列線性復(fù)雜度和k錯線性復(fù)雜度的研究. 筆者博士論文中主要的研究工作是對周期序列線性復(fù)雜度和k錯線性復(fù)雜度按照不同的周期類別進行了近一步的細(xì)劃,對隨機周期序列的線性復(fù)雜度和k錯線性復(fù)雜度的統(tǒng)計性質(zhì),包括期望,方差的界的一些估計有一些更緊的結(jié)果.另外還有一些多重序列方面的研究工作

7、.此外,對于周期為2n的二元隨機周期序列的k=1,2-錯線性復(fù)雜度進行了深入的研究,給出了精確的數(shù)學(xué)公式描述分布的規(guī)律;并給出了周期為2n的二元周期序列的1-錯線性復(fù)雜度的新算法,另外還在得到了二元隨機周期序列的線性復(fù)雜度為固定值時,內(nèi)在結(jié)構(gòu)的一些性質(zhì)基礎(chǔ)之上,提出了新算法去定位這些可能發(fā)生錯誤的位置. 事實上這樣的研究是還是非常的理論的,試圖從序列本身固有的定量的東西(如周期,長度,錯誤值,有限域的元素數(shù)目,分圓陪集的結(jié)構(gòu))來

8、揭示序列的線性復(fù)雜度和k錯線性復(fù)雜度的統(tǒng)計性質(zhì),這樣的研究結(jié)果會很定量而且很深刻;但是這樣的結(jié)果畢竟是太理論了一些;如果能夠參與到一些與數(shù)字版權(quán)相關(guān)的,與安全工程相關(guān)的實際項目中,會對實際的應(yīng)用背景和要求會有更深的理解.筆者有幸能夠到微軟亞洲研究院,IBM中國研究中心參與這樣的一些項目,包括數(shù)字版權(quán)管理,安全存儲,數(shù)字水印的應(yīng)用項目.從中收獲也非常大. 這篇博士論文的結(jié)構(gòu)是這樣的:第一章主要是介紹序列各種復(fù)雜度的基本概念和近幾年

9、國內(nèi)外對序列復(fù)雜度研究的方法和進展;第二章主要是介紹自己在周期序列線性復(fù)雜度和k錯線性復(fù)雜度方面所做的一些研究工作和結(jié)果,以及未來工作的展望;第三章主要是介紹自己在周期為2n的隨機周期序列1-錯線性復(fù)雜度和2-錯線性復(fù)雜度分布及算法方面所做的最新的研究工作;第四章主要是介紹自己在微軟亞洲研究院,IBM中國研究中心所參與的一些與數(shù)字版權(quán)管理(DRM)相關(guān)的項目和所做的研究工作.最后是附錄,介紹自己獨立設(shè)計的周期為2n的周期序列1-錯線性復(fù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論