版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、安徽大學(xué)碩士學(xué)位論文基于混合智能的車牌識(shí)別關(guān)鍵算法研究姓名:陸玉申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):計(jì)算機(jī)技術(shù)指導(dǎo)教師:羅斌2010-05基于混合智能的車牌識(shí)別關(guān)鍵算法研究 II Abstract With the rapid development of China's economy, major cities in the traffic management level is gradually increasing, and be
2、cause of this, many of the intelligent management of traffic management measures began to be large-scale applications. In this one, motor vehicle license management as an important indicator of traffic vehicles, became t
3、he focus of management practices. Based on this, the vehicle license plate recognition system (LPR, License Plate Recognition) RD and application of intelligent transportation systems began to be affected, the most impor
4、tant factor of modernization, its also become a hot issue of the development of modern transportation. In the LRP system, the pair of algorithms are of particular importance, it contains the following parts, is related t
5、o academic studies of Zhongdian, namely: the Ding Wei Ju Liang license, vehicle license plates license Fenge and character recognition. Meanwhile, in order to enhance the license plate recognition, which requires efficie
6、nt recognition algorithm used to ensure that even in ambient lighting conditions Bad filming location and vehicle licenses and other factors inherent flaws, the still greater robustness to help the system accurately, rea
7、l-time identification requirements. In this paper, my work is focused on the image processing by the emulator. I analyze three problems, which are license locating, segmentation and character recognition. Before license
8、locating, 1. this paper first analyzes the current artificial intelligence methods which had been used, then compared with the current quantum evolutionary algorithm and particle swarm algorithm, then based on these me
9、thods, a new hybrid intelligent quantum particle swarm algorithm is built to preprocess the image; 2. the light of today's most commonly used method of positioning on the vehicle license, vehicle license and then com
10、bined with some of the inherent physical characteristics, in this paper, using methods based on mathematical morphology, adaptive function by constructing a structural element to the car candidate target area to locate t
11、he license; 3. summing up the vehicle license plate character segmentation algorithm based on continued use of domestic license plate license plate number of a priori knowledge such as the interval between the character
12、s within the license plate characters within the composition, then the objectives of the digital image in car card region vertical and horizontal projection, combined with knowledge of these bright, so can be a complete
13、license plate segmentation; 4. in character recognition, taking into account the actual license plate recognition features, calculated using the theory of intelligent design an improved BP neural network, and in accorda
14、nce with the classification of character features, respectively, with the improved BP neural network license plate the character recognition. KEY WORDS: License Plate Recognition, DSP, Quantum Evolution, Particle Swarm
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 車牌識(shí)別關(guān)鍵算法研究.pdf
- 車牌定位識(shí)別關(guān)鍵算法的研究.pdf
- 智能交通中車牌識(shí)別關(guān)鍵技術(shù)算法研究.pdf
- 車牌字符快速識(shí)別關(guān)鍵算法研究.pdf
- 車牌識(shí)別關(guān)鍵技術(shù)相關(guān)算法研究與實(shí)現(xiàn).pdf
- AdaBoost算法在車牌識(shí)別關(guān)鍵技術(shù)中的研究.pdf
- 基于小波分析的車牌識(shí)別關(guān)鍵方法研究.pdf
- 自動(dòng)車牌識(shí)別關(guān)鍵技術(shù)研究.pdf
- 掌紋識(shí)別關(guān)鍵算法的研究.pdf
- 車牌識(shí)別關(guān)鍵技術(shù)的研究與實(shí)現(xiàn).pdf
- 自然環(huán)境下的車牌識(shí)別關(guān)鍵方法研究.pdf
- 車牌識(shí)別關(guān)鍵技術(shù)研究與應(yīng)用.pdf
- 基于視頻的車輛檢測與車牌識(shí)別關(guān)鍵技術(shù)研究.pdf
- 面向智能手機(jī)的車牌識(shí)別關(guān)鍵技術(shù)與應(yīng)用研究.pdf
- 車牌識(shí)別中的關(guān)鍵算法研究.pdf
- 車牌字符識(shí)別關(guān)鍵技術(shù)研究及車牌識(shí)別系統(tǒng)實(shí)現(xiàn).pdf
- 掌紋識(shí)別關(guān)鍵算法的研究(1)
- 基于視頻的車輛檢測和車牌識(shí)別關(guān)鍵技術(shù)研究.pdf
- 基于數(shù)字圖像處理的車牌識(shí)別關(guān)鍵技術(shù)研究.pdf
- 車牌識(shí)別關(guān)鍵技術(shù)研究及系統(tǒng)實(shí)現(xiàn).pdf
評(píng)論
0/150
提交評(píng)論