版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、南京航空航天大學(xué)碩士學(xué)位論文電報(bào)方程組雙周期正解問(wèn)題姓名:王方磊申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):應(yīng)用數(shù)學(xué)指導(dǎo)教師:安玉坤20080201電報(bào)方程組雙周期正解問(wèn)題 ii Abstract Because of the important physical background, many people pay attention to the existence of periodic solution for the telegraph equ
2、ation and do much study work, such as the existence of double periodic solution on time and space, the existence of periodic solution on time with Dirichelet boundary condition, and the other related study. In this paper
3、, we mainly consider the existence of wealy double periodic solution for a class of coupled telegraph systems. First of all, we obtain the sufficient conditions of the existence of at least one, two, or three double peri
4、odic positive solutions for the nonlinear telegraph system using Fixed point theorem of cone mapping (Fixed theorem of cone expansion and comprehension) and topological degree approaches (Leggett-Williams multiple fixed
5、theorem). Second, we obtain a maximum principle for the linear doubly periodic telegraph system using an abstract result in a recent paper by Correa and Souto[5]. We discuss the existence of double periodic positive solu
6、tions for the nonlinear telegraph system on the basis of the above maximum using the method of upper and lower solution and thereom of fixed point index. Finally, we study two telegraph systems with more general nonlinea
7、r terms. One is that the nonlinear term may be negative, we call such problem as semipositone problem, so we discuss the existence of double periodic positive solution for the semipositone telegraph system. Another is th
8、at the nonlinear term may be singular, we also consider the existence of double periodic positive solution of the singular telegraph system. Keywords: telegraph system, maximum principle, doubly periodic solutions, cone,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電報(bào)方程組及其穩(wěn)態(tài)方程等問(wèn)題的研究.pdf
- 微分方程組周期邊值問(wèn)題.pdf
- 共軛積分方程組正解的多重性.pdf
- 非線性微分方程組的正解存在性問(wèn)題.pdf
- 高階非線性常微分方程組的正解問(wèn)題.pdf
- 常微分方程組邊值問(wèn)題正解的存在性.pdf
- 微分方程組正解的存在性.pdf
- 非線性微分方程組的正解.pdf
- 幾類非線性常微分方程組邊值問(wèn)題的正解.pdf
- 一類橢圓方程組的正解結(jié)構(gòu).pdf
- 幾類常微分方程組奇異邊值問(wèn)題正解存在性研究.pdf
- 非線性微分方程組多點(diǎn)邊值問(wèn)題正解的存在性.pdf
- 幾類擬線性橢圓型方程組的正解.pdf
- 48646.幾類微方程及方程組正解的存在性
- 非局部高階微分方程組邊值問(wèn)題正解的存在性.pdf
- 一類線性耦合方程組的徑向?qū)ΨQ正解.pdf
- 上半空間積分方程組的正解的相關(guān)性質(zhì).pdf
- 微分方程(組)邊值問(wèn)題的正解.pdf
- 一類常微分方程組積分邊值問(wèn)題正解的存在性.pdf
- 兩類二階微分方程組邊值問(wèn)題正解的存在性.pdf
評(píng)論
0/150
提交評(píng)論