版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、浙江大學(xué)理學(xué)院博士學(xué)位論文弱Hopf代數(shù)的結(jié)構(gòu)及其箭圖表示姓名:穆尼爾申請(qǐng)學(xué)位級(jí)別:博士專業(yè):基礎(chǔ)數(shù)學(xué)指導(dǎo)教師:李方20070601AbstractweakHopfalgebraHwithweakantipodeTiscalledasemilattice廂adedweakHopfalgebraifH=o^kisasemilatticegradedo∈yLet≈rbeacoalgebrathenthesetofitsgrouplikeel
2、ements|sgivenbythesetG(kr)=扣∈打JZX(u)=d圓d,E(n)=1)Itcaneasilybeverifiedthat“i3acoalgebraInfactitisthedualversionofthepathalgebrastructureoilafinitequiverasconsideredbyWchinandSMontgomeryin117I_F0ranarbitraryquiverrthepathc
3、oalgebrakFispointedsinceaⅡ0fjtssimplesubcoalgebrasareonedimensionalThen七ro箋k(G(kr))isthekvectorspacewithbasisa(kr)IfthepathcoalgebrakFisabialgebraoverkthenG(kFl望F0isasemigroupundermultiDlicationand讓七risaHopfalgebraoverkt
4、henG(kF)isAgroup(bylgtl)Thevec斷space燈】isakFobicomoduIewiththeleftandfightcomodulestructuremaps6L(a)=t(8)on,and5R(a)=ao3(n),respectivelyforalla∈捌r卜Thecotensorproductofkrlwithitseffisthekeruelofthemaphol一1@屯:kFl0南r1_七rlokr
5、00krl,wherekrxistherigh£andleftkrocomoduleswiththestructuremaps屯and6nrespectively(8∞『23|)Oul“researchworkmainlyconsistsoffivepartswhich啪described∞followsfI)Inf231CCibil8andMRossodefinedthenotionofHopfquiverandclassifiedt
6、heP叮adedHopfalgebrastructuresusingsuchquiversWiththequestionofgeneralizationofHopfquivertheauthorsdefinethenotiouofweakHopfquiverDle£3311withramificationdataofsomecli肋rdmortoldSWealsodescribethe盯adedstructuresofweakHopfm
7、udnl髑overtheCliffordmonoidalgebrak8whichisasemilattice阜adedweakHopfalgebraWeest出lishastrongconditionbetweenthepathcoalgebraendowedwiththestructureofsemilatticegradedweakHopfalgebraandtheweakHopfquiverofsomeCliffordmonoid
8、withrespecttosomeramificationdata(s∞Theorem335)HopfmuduleearenaturalrepresentationsofHopfalgebrasTheyfo珊allabeliancategoryU(H)by(20i,providedwiththetensorproductHopfbimodulesoveragroupalgebraprovidesustheclassificationof
9、patheoalgebraswhichadmitgradedHopfalgebrastructures,intheformofcategoryt;(kG)【2S]WeakHopfhimudnlesaretherepresentationsoftheweakHopfalgebrasWe址HopfbimodulesoveraCliffordmonoidalgebrakSca丑beconsideredtoclassifythepathcoal
10、gebrawhichadmitsasemiiattice審adedweakHopfalgebrastructureThugweakHopfkSbimoduiesoxetherepresentationsofthesemitattice盯adedweakHopfalgebrasMRoesoin1821established蛆equivalenceofB(日)asamonoidalcategorytothecategoryofmodules
11、overtheDrinfel’ddoubleofHC,CibiisandMRussoin123lhasestablishedaonetoonecorrespondencebetweentheobjectsofHopfbimodulesB(kG)andacompletellstof日adedHopfalgebrastructuresonthepathcoalgebrakFcorrespondingtotheHopfquiverrWegiv
12、eanequivalericebetweenthecategoryofCliflurdmonoidalgebrasandthecategoryof女z百一bimoduies(seeTbeorem339)Weuisoestablisha11equivalencebetweenthecategoryofweakHopfkSbimodulesB(ks)andacompletelistofsemilattice燈adedweakHopfalge
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 弱量子代數(shù)的弱Hopf代數(shù)結(jié)構(gòu)及表示.pdf
- 弱Hopf代數(shù)及其相關(guān)結(jié)構(gòu).pdf
- Hopf代數(shù)與弱Hopf代數(shù)上的余模結(jié)構(gòu).pdf
- 半格分次弱Hopf代數(shù)及其結(jié)構(gòu).pdf
- 弱Hopf代數(shù)上的結(jié)構(gòu)定理.pdf
- Hopf箭圖與辮子Hopf代數(shù).pdf
- Pointed Hopf代數(shù)的表示.pdf
- 14626.對(duì)應(yīng)于taft代數(shù)的弱hopf代數(shù)的結(jié)構(gòu)
- 弱Hopf群余代數(shù).pdf
- 箭圖hopf代數(shù)的限制pbw基
- 箭圖Hopf代數(shù)的限制PBW基.pdf
- 某些Hopf代數(shù)的Hopf--代數(shù)結(jié)構(gòu).pdf
- 若干類Hopf代數(shù)的表示.pdf
- 關(guān)于弱Hopf代數(shù)的若干研究.pdf
- 弱Hopf代數(shù)的積分理論.pdf
- 余擬三角弱Hopf代數(shù)及弱Hopf代數(shù)上的Yetter-Drinfeld范疇.pdf
- 弱Hopf代數(shù)上的Maschke定理及基本結(jié)構(gòu)定理.pdf
- 在弱HOPF雙模范疇中結(jié)合代數(shù)的廣義李代數(shù)結(jié)構(gòu).pdf
- 弱Hopf代數(shù)上右扭曲弱Smash積.pdf
- 代數(shù)表示論在Hopf代數(shù)中的應(yīng)用.pdf
評(píng)論
0/150
提交評(píng)論