版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、Many common human diseases, such as cancer, schizophrenia, essential hypertension, type 2 diabetes, and cardiovascular disease, are known to be complex diseases. Complex diseases, also known as multifactorial diseases, a
2、re controlled by multiple genetic and environmental factors. Although they often show a tendency for family aggregation, complex diseases do not have a clear-cut pattem ofinheritance. This
makes it difficult to de
3、termine one's risk ofinheriting or passing on these disorders.
Recently with rapid improvements in high-throughout genotyping techniques and the growing number of available markers, genome-wide association studies
4、 (GWAS),
which genotype hundreds ofthousands of single nucleotide polymorphisms (SNPs) on
thousands ofparticipants, are emerging as promising approaches for the identification of SNPs that are marginally as
5、sociated with complex diseases. On the other hand, researches on gene-gene interactions (epistasis) in GWAS have shed light on some disease-associated pathways and networks to some extent, and improved our understanding
6、of the genetic basis of complex diseases despite the computational challenge. However, there are still many analytic and interpretation challenges in
GWAS. It is customary to run SNP-based association or interacti
7、on tests in the whole
genome to identify causal or associated SNPs with strong marginal or jointly epistasis
effects on disease or traits. In other words, the unit of association is the SNP. However,
8、 such a SNP-based analysis usuallyleads to computational burden and the well-known
multiplicity problem, with a highly inflated risk of type I error and decreased ability to detect modest effects. In the present s
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 17233.基于罕見變異體的全基因組關聯(lián)分析方法研究
- 宏基因組數(shù)據(jù)分析中的統(tǒng)計方法研究.pdf
- 39035.基于生物學通路方法的全基因組關聯(lián)分析
- 人類全基因組Sp1結(jié)合區(qū)域甲基化與基因表達的關聯(lián)分析.pdf
- 全基因組關聯(lián)分析中SNP數(shù)據(jù)補缺算法研究與實現(xiàn).pdf
- 整合功能注釋的全基因組選擇和關聯(lián)分析方法研究.pdf
- 基于線性混合模型的全基因組關聯(lián)分析的算法研究.pdf
- 雞攻擊行為的全基因組關聯(lián)分析.pdf
- 復雜網(wǎng)絡分析方法在全基因組關聯(lián)研究中的應用.pdf
- 加權SNP集分析方法在全基因組關聯(lián)研究中的應用.pdf
- CUDA平臺下基于通路的全基因組關聯(lián)研究.pdf
- HBV相關肝病的全基因組關聯(lián)研究.pdf
- 不同數(shù)據(jù)結(jié)構(gòu)下的基因組關聯(lián)分析.pdf
- 玉米芽再生能力調(diào)控基因的全基因組關聯(lián)分析.pdf
- 脂聯(lián)素的全基因組通路關聯(lián)分析研究.pdf
- 基于RNA-Seq的小麥產(chǎn)量性狀全基因組關聯(lián)分析.pdf
- 基于Hadoop的全基因組關聯(lián)研究系統(tǒng)設計與實現(xiàn).pdf
- 油菜株型相關性狀的全基因組關聯(lián)分析.pdf
- 基于奇異值分解和SCAD估計的多位點全基因組關聯(lián)分析方法.pdf
- 基于通路分析的中國漢族人群身高全基因組關聯(lián)研究.pdf
評論
0/150
提交評論