2023年全國(guó)碩士研究生考試考研英語(yǔ)一試題真題(含答案詳解+作文范文)_第1頁(yè)
已閱讀1頁(yè),還剩43頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、華中科技大學(xué)碩士學(xué)位論文關(guān)于勾股定理與畢達(dá)哥拉斯定理發(fā)現(xiàn)的比較研究姓名:周紅艷申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):科學(xué)技術(shù)哲學(xué)指導(dǎo)教師:成良斌20090527華 中 科 技 大 學(xué) 碩 士 學(xué) 位 論 文 華 中 科 技 大 學(xué) 碩 士 學(xué) 位 論 文 IIAbstract Discovery and proof prove have been two primarily objects in the mathematics’ researchi

2、ng. And it’s true that math has been the shining star for this reason. The GouGu theorem is the first milestone in the math’s history. However the priority of this discovery is not clear yet. Did ancient Chinese people d

3、iscover it or the famous west philosopher Pythagoras? Checking the history, we know that not only the geometric theorem had proved this theorem, but also the Chinese ancient person ZhouShuang had proved it. Then how did

4、ZhouShuang prove it? Is it a logical proving? And who discover it first? This paper is based on the priority of the discovery of GouGu theorem. Through analysis the priority of GouGu theorem, it promotes the principles a

5、nd measure criteria to the priority of the ancient scientific discovery. And then it analyzes the reasons for this same theorem discovery. Using the historical material approach, the paper firstly points out different di

6、scovery time of this theorem, and checks the two different prove way. Then conclude by the scientific discovery concept, china and west had using different way discovered this same theorem. As there didn’t form the unit

7、science world in the ancient time, so the priority of scientific discovery should have different measure principles and criteria. Through the sensitive differences to the scientific discovery time, it comes out the princ

8、iples and measure criteria for the priority of the ancient scientific discovery. And it gives the point that china is earlier or almost at the same time with west world discovered the GouGu Theorem. Follow up; this paper

9、 analyzes the reasons for this same theorem discovery. It compared the differences of social culture and mathematics’ development in china and west science world. In conclusion, this paper compared the GouGu theorem and

10、Pythagorean Theorem, points out the principles and measure criteria to the ancient scientific discovery, and analyzes the different society and math development of china and west world. Key worlds: Discovery, Proved, Anc

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論