2023年全國(guó)碩士研究生考試考研英語(yǔ)一試題真題(含答案詳解+作文范文)_第1頁(yè)
已閱讀1頁(yè),還剩51頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、次范整線性空間,即次范Z-空間,是泛函分析中經(jīng)典賦范線性空間的自然推廣.本文致力于次范整線性空間基本理論的進(jìn)一步研究.主要內(nèi)容包括:研究可換平移空間與次范整線性空間的關(guān)系,以及次范整線性空間的拓?fù)浣Y(jié)構(gòu);進(jìn)一步討論次范整線性空間上的可加奇性算子三種有界性以及與連續(xù)性之間的關(guān)系,考察三種有界可加奇性算子空間;在次范Z-空間中給出Hahn-Banach定理與共鳴定理的推廣.論文的框架如下: 第一章,作為緒論,介紹可換平移空間與次范整線

2、性空間的產(chǎn)生和發(fā)展,并且概括了本文的主要內(nèi)容. 第二章,進(jìn)一步討論可換平移空間與次范整線性空間之間的關(guān)系.證明了每個(gè)次范整線性空間也可確定一個(gè)可換平移空間,兩者本質(zhì)上是等價(jià)的.并研究(擬)次范整線性空間的拓?fù)浣Y(jié)構(gòu),證明了擬次范整線性空間是一個(gè)拓?fù)淙?,次范整線性空間是一個(gè)Hausdorff拓?fù)淙?,還給出了Hausdorff拓?fù)淙撼蔀榇畏墩€性空間的充分必要條件.此外.還證明了次范整線性空間的完備化定理。 第三章,引進(jìn)可加奇

3、性算子三種不同的(擬)次范數(shù),利用它們刻畫可加奇性算子的三種有界性.并進(jìn)一步研究這三種有界性之間以及與連續(xù)性的關(guān)系,給出使它們彼此等價(jià)的條件.同時(shí),還考察三種有界可加奇性算子空間,給出使有界可加奇性算子次范Z-空間完備的充要條件. 第四章,我們首先建立Abel群上可加奇性泛函的延拓定理.然后,利用它給出Hahn-Banach定理在次范Z-空間中的推廣.作為其應(yīng)用,我們得到了幾個(gè)與經(jīng)典泛函分析中結(jié)論相應(yīng)的重要推論.最后,進(jìn)一步研究

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論