基于深度學(xué)習(xí)的服裝圖像分類與檢索.pdf_第1頁(yè)
已閱讀1頁(yè),還剩75頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、隨著服裝電子商務(wù)的蓬勃發(fā)展,網(wǎng)絡(luò)上的服裝圖像數(shù)據(jù)量急劇增長(zhǎng)。面對(duì)海量的服裝圖像數(shù)據(jù),如果使用人工進(jìn)行服裝圖像的語(yǔ)義屬性標(biāo)注以用于分類和檢索,則需要花費(fèi)大量的人力和時(shí)間,而且語(yǔ)義屬性并不能完全表達(dá)服裝圖像中的豐富信息,造成檢索效果不佳。因此尋找快捷有效的服裝圖像分類和檢索方法是一個(gè)有意義的課題。近年來(lái),深度學(xué)習(xí)在圖像處理領(lǐng)域取得了卓越的成績(jī),本文基于深度學(xué)習(xí)對(duì)服裝圖像的分類和檢索技術(shù)進(jìn)行研究,主要完成了以下工作:
  首先簡(jiǎn)要介紹了

2、深度學(xué)習(xí)的基本概念和常用的模型結(jié)構(gòu),并詳細(xì)闡述了卷積神經(jīng)網(wǎng)絡(luò)的原理及其模型組件。針對(duì)服裝圖像對(duì)多個(gè)屬性同時(shí)進(jìn)行分類和識(shí)別的要求,構(gòu)建了基于多任務(wù)學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。
  為了克服背景、光照、變形等因素的影響,采用了結(jié)合度量學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),具體包括Siamese和Triplet兩種模型結(jié)構(gòu)。實(shí)驗(yàn)結(jié)果表明,度量學(xué)習(xí)的引入,特別是采用Triplet結(jié)構(gòu),可以顯著提高分類的準(zhǔn)確性。
  之后使用訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行特

3、征提取用于圖像檢索,并和基于SIFT特征的檢索方法進(jìn)行比較。實(shí)驗(yàn)結(jié)果表明,檢索時(shí)使用卷積神經(jīng)網(wǎng)絡(luò)提取的特征相比于傳統(tǒng)的SIFT特征具有明顯的優(yōu)勢(shì),特別是基于Triplet結(jié)構(gòu)的卷積神經(jīng)網(wǎng)絡(luò)的抗干擾能力顯著提高。此外,融合卷積層和全連接的特征映射作為特征表示也比使用單一的特征映射具有更好的效果。為了更進(jìn)一步消除背景因素的影響,還使用Faster-RCNN算法進(jìn)行衣物檢測(cè)以提取出感興趣的區(qū)域。
  最后為了提升檢索速率,采取了兩種可行

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論