版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、假如高等數(shù)學(xué)是棵樹(shù)木得話,那么極限就是他的根,函數(shù)就是他的皮。樹(shù)沒(méi)有跟,活不下去,沒(méi)有皮,只能枯萎,可見(jiàn)這一章的重要性。為什么第一章如此重要?各個(gè)章節(jié)本質(zhì)上都是極限,是以函數(shù)的形式表現(xiàn)出來(lái)的,所以也具有函數(shù)的性質(zhì)。函數(shù)的性質(zhì)表現(xiàn)在各個(gè)方面首先對(duì)極限的總結(jié)如下極限的保號(hào)性很重要就是說(shuō)在一定區(qū)間內(nèi)函數(shù)的正負(fù)與極限一致1極限分為一般極限,還有個(gè)數(shù)列極限,(區(qū)別在于數(shù)列極限時(shí)發(fā)散的,是一般極限的一種)2解決極限的方法如下:(我能列出來(lái)的全部列出
2、來(lái)了?。。。。∧氵€能有補(bǔ)充么???)1等價(jià)無(wú)窮小的轉(zhuǎn)化,(只能在乘除時(shí)候使用,但是不是說(shuō)一定在加減時(shí)候不能用但是前提是必須證明拆分后極限依然存在)e的X次方1或者(1x)的a次方1等價(jià)于Ax等等。全部熟記(x趨近無(wú)窮的時(shí)候還原成無(wú)窮?。?LHopital法則(大題目有時(shí)候會(huì)有暗示要你使用這個(gè)方法)首先他的使用有嚴(yán)格的使用前提?。。。。?!必須是X趨近而不是N趨近?。。。。。。。ㄋ悦鎸?duì)數(shù)列極限時(shí)候先要轉(zhuǎn)化成求x趨近情況下的極限,當(dāng)然n趨近
3、是x趨近的一種情況而已,是必要條件(還有一點(diǎn)數(shù)列極限的n當(dāng)然是趨近于正無(wú)窮的不可能是負(fù)無(wú)窮?。┍仨毷呛瘮?shù)的導(dǎo)數(shù)要存在?。。。。。。。。偃绺嬖V你g(x)沒(méi)告訴你是否可導(dǎo),直接用無(wú)疑于找死!?。┍仨毷?比0無(wú)窮大比無(wú)窮大?。。。。。。。?!當(dāng)然還要注意分母不能為0LHopital法則分為3中情況10比0無(wú)窮比無(wú)窮時(shí)候直接用20乘以無(wú)窮無(wú)窮減去無(wú)窮(應(yīng)為無(wú)窮大于無(wú)窮小成倒數(shù)的關(guān)系)所以無(wú)窮大都寫(xiě)成了無(wú)窮小的倒數(shù)形式了。通項(xiàng)之后這樣就能變成1中
4、的形式了30的0次方1的無(wú)窮次方無(wú)窮的0次方對(duì)于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對(duì)數(shù)的方法,這樣就能把冪上的函數(shù)移下來(lái)了,就是寫(xiě)成0與無(wú)窮的形式了,(這就是為什么只有3種形式的原因,LNx兩端都趨近于無(wú)窮時(shí)候他的冪移下來(lái)趨近于0當(dāng)他的冪移下來(lái)趨近于無(wú)窮的時(shí)候LNX趨近于0)3泰勒公式(含有e的x次方的時(shí)候,尤其是含有正余旋的加減的時(shí)候要特變注意?。。。。〦的x展開(kāi)sina展開(kāi)cos展開(kāi)ln1x展開(kāi)對(duì)題目簡(jiǎn)化有很好幫助4面對(duì)無(wú)窮大比上
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高數(shù)中求極限的16種方法
- 高數(shù)中求極限的16種方法
- 高數(shù)中求極限的16種方法29492
- 高數(shù)中求極限的16種方法29624
- 函數(shù)極限的十種求法
- 高數(shù) 極限
- 高數(shù)中求極限的16中方法
- 極限的求法
- 極限求法總結(jié)
- 高數(shù)中求極限的16中方法29657
- 高數(shù)中求極限的16中方法29742
- 高數(shù)-數(shù)學(xué)極限總結(jié)
- 16種求極限的方法
- 數(shù)列極限的幾種求法
- 求極限的16種方法
- 高數(shù)求極限的方法小結(jié)
- 淺析極限的若干求法 摘要
- 高等數(shù)學(xué)常用極限求法
- 淺析-函數(shù)極限求法的-論文
- 冪指函數(shù)的極限求法
評(píng)論
0/150
提交評(píng)論