非圓齒輪與機械壓力機運動學優(yōu)化外文文獻翻譯、中英文翻譯、外文翻譯_第1頁
已閱讀1頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、<p>  附錄一:英文文獻原文</p><p>  Optimized Kinematics of Mechanical Presses with Noncircular Gears</p><p>  E. Doege ( l ) , M. Hindersmann</p><p>  Received on January 8, 1997</p&

2、gt;<p>  Abstract:The quality of parts manufactured using metal forming operations depends to a large degree on the kinematics of the press ram. Non-circular gearsy to obtain those stroke-time behaviours we aim at

3、 as an optimum for the various metal forming ope with a rotational-angle-dependent speed ratio in the press drive mechanism offer a new wa rations in terms of manufacturing. The paper explains the principle using a proto

4、type press which was built by the Institute for Metal Forming and Metal Form</p><p>  Keywords: Press, Gear, Kinematics</p><p>  1 lntroductior</p><p>  Increasing demands on qualit

5、y in all areas of manufacturing engineering, in sheet metal forming as well as in forging, go hand in hand with the necessity to make production economical. Increasing market orientation requires that both technological

6、and economic requirements be met. The improvement of quality, productivity and output by means of innovative solutions is one of the keys to maintaining and extending one's market position.In the production of parts

7、by metal forming, we need to disting</p><p>  With some forming processes we have to add time for necessary additional work such as cooling or lubrication of the dies. This yields two methods of optimization

8、, according to the two aspects of quality and output. In order to satisfy both aspects, the task is to design the kinematics taking into account the requirements of the process during forming; also to be considered is th

9、e time required for changing the part as well as for auxiliary operations in line with the priority of a short cycle ti</p><p>  2 Pressing Machine Requirements</p><p>  One manufacturing cycle,

10、 which corresponds to one stroke of the press goes through three stages: loading,forming and removing the part. Instead of the loading and removal stages we often find feeding the sheet, especially in sheer cutting. For

11、this, the press ram must have a minimum height for a certain time. During the forming period the ram should have a particular velocity curve,which will be gone into below. The transitions between the periods should take

12、place as quickly as possible to ensu</p><p>  In deep drawing operations, the velocity of impact when striking the sheet should be as low as possible to avoid the impact. On the one hand, velocity during for

13、ming must be sufficient for lubrication. On the other hand, we have to consider the rise in the yield stress corresponding to an increase in the strain rate which creates greater forces and which may cause fractures at t

14、he transition from the punch radius to the side wall of the part.</p><p>  In forging, short pressure dwell time is desirable. As the pressure dwell time drops the die surface temperature goes down and as a

15、result the thermal wear This is counteracted by the enhanced mechanical wear due to the greater forming force, but the increase due to the strain rate is compensated by lower yield stress because of the lower cooling of

16、the part. The optimal short pressure dwell can nowadays be determined quantitatively using the finite element method [3]. In addition to cost avoida</p><p>  The requirements of high part quality and high ou

17、tput will only be met by a machine technology which takes into account the demands of the metal forming process in equal measure to the goal of decreasing work production costs. Previous press designs have not simultaneo

18、usly met these technological and economical requirements to a sufficient extent, or they are very costly to design and</p><p>  manufacture, such as presses with link drives [6]. This makes it necessary to l

19、ook for innovative solutions for the design of the press. Its design should be largely standardized and modularized in order to reduce costs [6].</p><p>  Fig 1. Prototype press</p><p>  3 Press

20、 Drive with Noncircular Gears</p><p>  3.1 Principle</p><p>  The use of non-circular gears in the drive of mechanical crank presses offers a new way of meeting the technological and economic de

21、mands on the kinematics of the press ram. A pair of non-circular gears with a constant center distance is thus powered by the electric motor, or by the fly wheel, and drives the crank mechanism itself.The uniform drive s

22、peed is transmitted cyclically and</p><p>  non-uniformly to the eccentric shaft by the pair of noncircular gears. If the non-circular gear wheels are suitably designed, the non-uniform drive of the driven g

23、ear leads to the desired stroke-time behaviour of the ram. Investigations at the Institute for Metal Forming and Metal Forming Machine Tools (IFUM) of Hanover University have shown that in this simple manner all the rele

24、vant uninterrupted motions of the ram can be achieved for various forming processes [2].</p><p>  Apart from, the advantages of the new drive, which result from the kinematics and the shortened cycle time, t

25、he drive concept is distinguished by the following favourable propertties. Because it is a mechanical press, high reliability and low maintenance may be expected. In comparision to linkage presses the number of parts and

26、 bearings is clearly reduced. Above all, a basic press type can be varied without further design changes by installing different pairs of gears, designed according to the </p><p>  of the customer. Unlike li

27、nk drives, bearing locations and installations do not change within one load</p><p>  class as a result of different kinematics. Thus the above mentioned requirement of modularization and standardization is

28、taken into account Reductions in time and costs are possible for the design and press manufacture.</p><p>  3.2 Prototype</p><p>  At the Institute for Metal Forming and Metal Forming Machine To

29、ols (IFUM) a C-frame press has been remodeled and a pair of non-circular gears was installed. The previous backgears were replaced by a planetary gear set for this purpose. The work carried out shows that remodeling of e

30、xisting presses for the new drive is possible. The state of the press at the end of the remodelling is shown in fiqure 1. The press is designed for a nominal ram force of 1,000 kN and 200 kN of the die cushion. The ce<

31、;/p><p>  Fig. 2 View of the gears from the rear</p><p>  The press is designed for deep drawing of flat parts in single stroke operation mode. The maximum ram stroke is 180 mm, the number of strok

32、es 32/min. At a stroke of 140 mm the ram velocity almost remains constant 71 mmls from 60 mm before lower dead center until lower dead center, see fiqure 3. Thus the velocity corresponds to the working velocity of hydrau

33、lic presses. The velocity of incidence of a crank mechanism with the same number of strokes would be 220 mmls, in comparison. In order to kee</p><p>  cycle time of the remodelled machine results from the fa

34、st upward motion. Because the press is run in single stroke operation mode, no particular requirements were made concerning handling time during design.</p><p>  The drive mechanism of the prototype with non

35、-circular gears has in addition a favourable effect on the ram forces and the driving torques (ficlure 4). For a crank press the nominal force is normally available at 30" rotation of the crank shaft before the lowe

36、r dead center. This corresponds to a section under nominal force of only 7 5% relative to the stroke. To reach the nominal force of 1,000 kN, the drive has to supply a torque of 45 kNm at the crank shaft. The prototype o

37、nly requires 30 kNm </p><p>  4 Further Design Examples</p><p>  Using the examples of two stroke-time behaviours the design is illustrated in the following. A range of parts is assumed which ar

38、e to be manufactured by the press. For this purpose the ram velocity requirements and the forming section of the assumed stroke need to be quantified.Furthermore, the time needed for the handling of the part needs to be

39、determined, and also the minimum height which the ram has to assume during the handling. From this, we design the sequence of movements, and we describ</p><p>  it mathematically. At the IFUM, a software pro

40、gram developed by the institute is used. From this mathematical description of the stroke-time behaviour we can calculate the speed ratio of the non-circular gears needed.From this we obtain the rollcurves of the gears [

41、l, 2, 7].</p><p>  In a first example the ram velocity in deep drawing is supposed to be constant during the sheet metal forming at least over 100 mm before the lower dead center and it is supposed to be abo

42、ut 400mm/s. Let the number of strokes be fixed at 30/min. Above 450mm section of stroke, let the time for the handling of the part be the same as for a comparable crank press with 25 strokes per minute. Fiqure 5 shows th

43、e stroke-time behaviour , which is attained by the sketched pair of gears. The gear wheels a</p><p>  A second example shows a drive mechanism as is used for forging. In fioure 6, stroke-time behaviour of a

44、conventional forging crank press is compared with the kinematics of the press with non-circular gears illustrated in the picture.The cycle time of the crank press is 0.7 s, the number of strokes is 85/min and the nominal

45、 force is 20 MN.Its pressure dwell time is 86 ms with a forming section of 50 mm. The pressure dwell of the press depicted with non-circular gears decreases by 67% to 28 ms. I</p><p>  5 Conclusions</p>

46、;<p>  The requirements of high productivity, reduced costs and the guarantee of high product quality to which all manufacturing companies are exposed, applies particularly to companies in the field of metal worki

47、ng. This situation leads us to reconsider the press drive mechanism in use up to now.</p><p>  The new drive for crank presses with non-circular gears described here allows us to optimize the kinematics of s

48、imple mechanical presses. This means that the cycle time is shortened to achieve high productivity and the kinematics follows the requirements of the forming process.The design effort needed is low. In contrast to presse

49、s with link drives, other kinematics can be achieved during the construction of the press by using other gears without changing bearing locations This allows the modula</p><p>  6 Acknowledgement</p>

50、<p>  The authors would like to express their appreciation to the German Machine Tool Builders Association (VDW), located in FrankfurVGermany, for its financial assistance and to some members for their active suppor

51、t.</p><p>  7 References</p><p>  [ I ] Bernard, J., 1992, Optimization of Mechanism Timing Using Noncircular Gearing, Mechanical Design and Synthesis, Vol. 46, p. 565-570.</p><p> 

52、 [2] Doege, E., Hindersmann, M., 1996, Fertigungsgerechte Kurbelpressenkinematik durch Unrundzahnrader. VDI-Z Special Antriebstechnik 1/96, p. 74-77.</p><p>  [31 Doege, E., Nagele, H., 1994, FE-Simulation o

53、f the Precision Forging Process of Bevel Gears, Annals of the CIRP, Vol. 43, p. 241-244.</p><p>  [4] Hindersmann, M., Betke, V., 1996, Unrunde Zahnrader- ein wiederentdecktes Maschinenelement, Konstruktion,

54、 Vol. 48, p. 256-262.</p><p>  [5] Litvin, F. L.: 1994, Gear qeometrv and applied theory,PTR Prentice Hall, Englewood Cliffs (NJ, U.S.A.).</p><p>  [6] Niemitz, D., 1992, Anforderungen an Grof3r

55、aumstufenpressen;Pflichtenheft fur die Auftragsvergabe. In:Blechbearbeitung '92, Int. Congress 27 -28.0ct.1992,VDI-Bericht, Vol. 946, p.231-253.</p><p>  [7] Ogawa. K., Yokoyama, Y., Koshiba, T., 1973, S

56、tudies on the Noncircular Planetary Gear Mechanisms with Nonuniform Motion, Bulletin of the JSME, Vol. 16. p. 1433-1442.</p><p>  附錄二:英文文獻翻譯</p><p>  非圓齒輪與機械壓力機運動學優(yōu)化</p><p>  1997年1

57、月8日研制</p><p>  摘要:使用金屬成形方法來加工生產(chǎn)零件的質(zhì)量很大取決于壓力桿。在機械壓力傳動時,有一種依賴于驅(qū)動旋轉(zhuǎn)角度速度比的非圓齒輪,提供了一種獲得這么動作時間的新途徑,我們致力于為不同的優(yōu)化金屬成型運作的制造。本文闡述了由漢諾威的大學研究所建成的金屬成形和金屬成形加工機床的使用原型原則,它就是目前運動學以及在原型產(chǎn)生的力和力矩。此外,本文展示了如何使用拉深和鍛造的一個例子,幾乎所有的金屬成形操

58、作可有利用于機械傳動機構的非圓齒輪。</p><p>  關鍵詞:壓力,齒輪,運動學。</p><p><b>  1. 簡介</b></p><p>  提高質(zhì)量的要求在生產(chǎn)工程制造,所有的金屬成形以及在鍛造,有必要去攜手制定生產(chǎn)經(jīng)濟。日益增長的市場定位要求技術和經(jīng)濟條件都得到滿足。提高質(zhì)量、生產(chǎn)力、生產(chǎn)手段的創(chuàng)新解決方案,是一種用來維持和擴

59、大的市場地位的關鍵所在。</p><p>  所生產(chǎn)的金屬部件,我們需要分清期間所需的形成過程和處理零件所需的時間。隨著我們必須添加一些必要的額外工作,例如冷卻或潤滑的模具一次成型過程。根據(jù)質(zhì)量和產(chǎn)量兩個方面,產(chǎn)生了兩個最優(yōu)化方法。為了滿足這兩個方面,我們的任務是設計運動學形成過程中考慮到該進程的要求,也考慮到的是改變部分以及與一個優(yōu)先線輔助運作所需的時間短周期的時間。</p><p>&

60、lt;b>  2. 壓力機的要求</b></p><p>  一個生產(chǎn)周期,這相當于一個沖程來回壓的過程,大致經(jīng)歷了三個階段:加載、成型和移除零件。相反,在加載和移除零件階段,我們經(jīng)常發(fā)現(xiàn)送料的薄板,尤其是在純粹的切割時候。為此,壓力泵必須要一個確定時間的最小高度。成型周期中桿應該有一個特別速度曲線,它將會降到最低。這個轉(zhuǎn)變期之間應盡快來確保短周期時間。</p><p>

61、  短周期的要求是事件的原因,以確保通過高產(chǎn)量低成本的部分。基于這個原因,關于對大型汽車車身沖壓片機和自動1200/min、拉深24/min的沖程數(shù)是標準的做法。增加沖程數(shù)是為了減少設計的周期變化導致增加的壓實機械應變率, 然而,這對成形過程有很明顯影響,使它必須考慮參數(shù)確定過程和被它所影響。</p><p>  在拉深成形過程中,當敲打板塊時的撞擊速度應盡量避免產(chǎn)生了深遠影響。一方面,速度成形時必須充分潤滑。另

62、一方面,我們必須要考慮提高產(chǎn)量的相應的壓力來增加造成更大的應變速率力,這可能導致沖床半徑一側(cè)的一部分過渡疲勞而導致斷裂。在鍛造時,停留時間短的壓力是可取的。隨著停留時間的壓力下降了模具的表面溫度將降低,其結(jié)果是熱磨損。這是提高抵消了由于機械磨損形成更大的力量,但由于增加的應變率是較低的,因為較低的部分冷卻屈服應力補償。目前,最佳短住壓力可以用有限元分析法萊分析。此外,避免由于成本降低磨損、短壓住時間也是一個重要的技術要求的精密鍛造,近凈

63、形部分有一個光明的未來。 </p><p>  高質(zhì)量的要求和高產(chǎn)量將只能通過一個機技術,考慮到金屬成形過程的考察要求等同于減少工作的目標成本。以前按設計已經(jīng)不能同時滿足這些技術要求和經(jīng)濟的充分程度,或他們是非常昂貴的設計和制造,例如鏈接驅(qū)動壓力機。這就需要尋找對泵創(chuàng)新設計的解決方案,它的設計應主要標準化,模塊化,以降低成本。</p><p>  3.非圓齒輪的壓力傳動</p>

64、<p><b>  3.1 原則</b></p><p>  使用非圓齒輪傳動機械曲柄壓力機,它提供了一種新方式的技術和經(jīng)濟需求的壓力桿運動。一對非圓齒輪有不變的中心距, 因此采用了電動馬達,或由飛輪、曲柄和驅(qū)動機制本身。制服驅(qū)動器的速度傳送是通過一對非圓齒輪傳遞給非均勻的偏心軸。如果非圓齒輪的適當設計,從動齒輪的非均勻驅(qū)動器會導致泵所需的行程時間行為。調(diào)查中心的金屬成形和金屬

65、成型機床(IFUM)漢諾威的大學已經(jīng)表明,在這個簡單的方式所有相關的壓力桿的連續(xù)運動,可以達到各種成形過程。</p><p>  此外從運動學和縮短生產(chǎn)周期,驅(qū)動概念導致新的驅(qū)動器的優(yōu)點被以下的良好性能所區(qū)分。因為它是一個機械壓力機,它具有高可靠性、低維護性和可預期性。對連桿壓力機的數(shù)量和軸承零件顯然是減少。首先,一個基本泵類型可以通過安裝不同的齒輪而進一步改變設計,它根據(jù)客戶的要求而設計。不同環(huán)節(jié)的驅(qū)動器,軸承

66、的安裝位置不會隨著單一載荷方向的不同運動而改變。因此,上述要求的模塊化和標準化是考慮到時間和成本,它降低了設計和沖壓生產(chǎn)成本。</p><p><b>  3.2 原型</b></p><p>  在金屬成型和金屬成型工具機(IFUM)1架的c型泵,它已經(jīng)進行了修整和安裝了非圓齒輪副。為達到這種目的,先前的背輪背一個行星齒輪組做取代。這項工作表明了存在的新型傳動印刷機

67、是可能的,在最后對標準壓力泵的改造在Fig. 1中進行說明。</p><p>  圖表1 壓力機設計是為了所受1000KN的柱塞力和200KN的沖壓模具緩沖力。 這一對非圓齒輪傳動比平均為1,每個齒輪輪齒有59,直齒,模數(shù)10mm(圖2)齒面寬是150mm,這些齒輪有漸開線輪齒。我假設了非圓曲線設計是以側(cè)面幾何設計為基礎。因此,一個非圓齒輪的齒形沿齒輪圓周而改變。盡管如此,它可以來自知名的梯形齒條. 然而[4.5

68、],提出了一種計算方法,它精確地把齒頂高和齒根高考慮在內(nèi),進行相應的調(diào)整。</p><p>  壓力機是為了在單一沖程模式下對零件進行深拉而設計的。最高滑塊行程為180mm,行程數(shù)32/min。在140毫米的沖壓速度幾乎保持71mm/s不變,它是靜點中心線到靜點中心線之前的速度。見圖3。這種速度就相當于液壓機工作的速度。這個速度影響到曲柄機構,使其與擊打具有相同的數(shù)目相比較,速度都是220m/。為了跟一個曲柄壓力

69、機具有相同的平均速度擊打的數(shù)目不得不將減少一半。短周期內(nèi)的機械改造將導致最后的向上運動。由于壓力機是運行在單一的操作模式,在設計時對其做相關的處理沒有提出特別的要求。</p><p>  驅(qū)動機制的原型與非圓齒輪有另外一個有利的影響及其驅(qū)動力矩(圖4)。對于一個曲柄壓力機的公稱力通??梢越档挽o點之前把曲柄軸按正常方式旋轉(zhuǎn)。這對應于公稱力作用下相對于擊打力的75%。若要達到1000kN標準力,該驅(qū)動器已提供45 k

70、Nm 的曲柄軸扭矩。該原型只要求對非圓齒輪傳動增加額外的30kNm力矩。他們被傳送一個循環(huán),非均勻的曲柄轉(zhuǎn)矩,將導致一個標準力在靜點范圍內(nèi)變化。這相當于27.5%的行程。如果非圓齒輪副是在壓力機的工作范圍,我們總能找到類似的條件。這幾乎總是與板料成形及沖壓件有關。這樣可以設計一些較弱的機器零件,而且節(jié)約成本。</p><p>  4. 進一步的設計實例</p><p>  利用二沖程時間行

71、為的設計實例說明了以下幾點。假設一系列的零件時通過壓力機來加工的。為了達到這一目的,壓力桿所需的速度和擊打成形速度要求假設成立必須量化。再者,處理零件所需的時間必須確定,而且必須假設在處理時壓力桿的最小高度。由此,我們設計動作的順序,我們用數(shù)學含義來描述它。在IFUM中,由該研究所開發(fā)使用軟件程序。從這個數(shù)學描述的沖程運動,我們可以計算出所需要的非圓齒輪速度比,從這我們可以得到齒輪的圓周曲線[1.2.7]。</p><

72、;p>  在第一個例子,在深拉伸沖壓速度應該是在靜止點前,金屬板材成形保持在至少超過100mm,它的速度應該是約400m/s。讓行程數(shù)定為30/min。第450mm以上擊打的地方,讓處理零件時間和曲柄壓力機在25min/n的擊打時間相同。圖5表明了沖程運動情況,這是由一對齒輪的描繪所獲得。該齒輪是通過他們的圓周率所描繪。在25/min傳統(tǒng)的余弦曲線作為比較。除了生產(chǎn)周期時間減少了20%,應把桿速度的影響也大大減少。下靜點前110m

73、m,當使用曲柄機構時,沖擊速度為700mm/s,而當使用非圓齒輪時僅僅只有410mm/s。</p><p>  第二個例子顯示了驅(qū)動裝置是用于鍛造。在圖6中,常規(guī)鍛造曲軸的行程時間是相對于在圖片中說明非圓齒輪壓力運動學。曲柄壓力機的周期時間是0.7s、行程數(shù)是85/min和標準力是20mn。它的保壓時間為86ms與50mm的成形部份時間。非圓齒輪壓力機描繪的保壓描繪時間67%減少至28ms。因此,它達到了和錘子一

74、樣的幅度。通過增加1.5倍的沖程數(shù),周期時間縮短至46mm。盡管如此,處理時間依舊與常規(guī)非圓齒輪曲柄壓力機的運動學相同。在這種情況下為了實現(xiàn)這些運動,傳統(tǒng)的圓弧齒輪可以作為驅(qū)動裝置,安排偏心。這為齒輪制造降低了成本。</p><p>  這些例子表明,不同的運動可以通過使用非圓齒輪驅(qū)動裝置實現(xiàn)。在同一時間內(nèi),這個驅(qū)動器的實用潛力用實現(xiàn)理想的運動學變得清晰,而且生產(chǎn)周期時間減少。例如,通過不同的例子,如果運動的順序

75、對一系列壓力機生產(chǎn)零件有利,可能增加拉深成形后的速度。</p><p><b>  5.總結(jié)</b></p><p>  高生產(chǎn)率,降低成本和保證產(chǎn)品質(zhì)量的高要求,這時所有制造公司所期望的,特別適用于公司的金屬加工領域。這種情況導致我們重新考慮壓力傳動機的使用。</p><p>  對曲柄與非圓齒輪傳動壓力機的描述,使我們能夠優(yōu)化簡單的機械壓力

76、機運動學。這意味著周期時間縮短,以達到高生產(chǎn)率和運動學的成形工藝的要求。這個設計工作需要很低。相對于多連桿壓力機驅(qū)動器,可以實現(xiàn)其他運動學在其他齒輪軸承位置不改變時的壓力機構建使用。這使壓力機模塊化和標準化。</p><p><b>  6.致謝</b></p><p>  作者想表達他們的謝意,感謝德國機床制造商協(xié)會(VDW),位于德國法蘭克福,其經(jīng)濟援助以及一些成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論