版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> 1700單詞,9100英文字符,3100漢字</p><p> 出處:Yang C T, Huang C L, Lin C F, et al. Hybrid Parallel Programming on GPU Clusters[C]// International Symposium on Parallel and Distributed Processing with Applica
2、tions. IEEE Computer Society, 2010:142-147.</p><p><b> 附錄1</b></p><p> Hybrid Parallel Programming on GPU Clusters</p><p> Abstract—Nowadays, NVIDIA,s CUDA is a gener
3、al purpose scalable parallel programming model for writing highly parallel applications. It provides several key abstractions - a hierarchy of thread blocks, shared memory, and barrier synchronization. This model has pro
4、ven quite successful at programming multithreaded many core GPUs and scales transparently to hundreds of cores: scientists throughout industry and academia are already using CUDA to achieve dramatic speedups on productio
5、n and research co</p><p> Keywords: CUDA, GPU, MPI, OpenMP, hybrid, parallel programming</p><p> INTRODUCTION</p><p> Nowadays, NVIDIA’s CUDA is a general purpose scalable parall
6、el programming model for writing highly parallel applications. It provides several key abstractions - a hierarchy of thread blocks, shared memory, and barrier synchronization. This model has proven quite successful at pr
7、ogramming multithreaded many core GPUs and scales transparently to hundreds of cores: scientists throughout industry and academia are already using CUDA to achieve dramatic speedups on production and research codes.</
8、p><p> In NVDIA the CUDA chip, all to the core of hundreds of ways to construct their chips, in here we will try to use NVIDIA to provide computing equipment for parallel computing. This paper proposes a solut
9、ion to not only simplify the use of hardware acceleration in conventional general purpose applications, but also to keep the application code portable. In this paper, we propose a parallel programming approach using hybr
10、id CUDA, OpenMP and MP programming, which partition loop iterations according </p><p> In this paper, we propose a general approach that uses performance functions to estimate performance weights for each n
11、ode. To verify the proposed approach, a heterogeneous cluster and a homogeneous cluster were built. In our mplementation, the master node also participates in computation, whereas in previous schemes, only slave nodes do
12、 computation work. Empirical results show that in heterogeneous and homogeneous clusters environments, the proposed approach improved performance over all previo</p><p> The rest of this paper is organized
13、as follows. In Section 2, we introduce several typical and well-known self-scheduling schemes, and a famous benchmark used to analyze computer system performance. In Section 3, we define our model and describe our approa
14、ch. Our system configuration is then specified in Section 4, and experimental results for three types of application program are presented. Concluding remarks and future work are given in Section 5.</p><p>
15、 BACKGROUND REVIEW</p><p> A. History of GPU and CUDA</p><p> In the past, we have to use more than one computer to multiple CPU parallel computing, as shown in the last chip in the history of
16、 the beginning of the show does not need a lot of computation, then gradually the need for the game and even the graphics were and the need for 3D, 3D accelerator card appeared, and gradually we began to display chip for
17、 processing, began to show separate chips, and even made a similar in their CPU chips, that is GPU. We know that GPU computing could be used to get th</p><p> CPU using advanced flow control such as branch
18、predict or delay branch and a large cache to reduce memory access latency, and GPU's cache and a relatively small number of flow control nor his simple, so the method is to use a lot of GPU computing devices to cover
19、 up the problem of memory latency, that is, assuming an access memory GPU takes 5 seconds of the time, but if there are 100 thread simultaneous access to, the time is 5 seconds, but the assumption that CPU time memory ac
20、cess time is 0.1 </p><p> Therefore, we in the arithmetic logic by GPU advantage, trying to use NVIDIA's multi-core available to help us a lot of computation, and we will provide NVIDIA with so many cor
21、e programs, and NVIDIA Corporation to provide the API of parallel programming large number of operations to carry out.</p><p> We must use the form provided by NVIDIA Corporation GPU computing to run it? No
22、t really. We can use NVIDIA CUDA, ATI CTM and apple made OpenCL (Open Computing Language), is the development of CUDA is one of the earliest and most people at this stage in the language but with the NVIDIA CUDA only sup
23、ports its own graphics card, from where we You can see at this stage to use GPU graphics card with the operator of almost all of NVIDIA, ATI also has developed its own language of CTM, APPLE also propo</p><p&g
24、t; B. CUDA Programming</p><p> CUDA (an acronym for Compute Unified Device Architecture) is a parallel computing architecture developed by NVIDIA. CUDA is the computing engine in NVIDIA graphics processing
25、 units or GPUs that is accessible to software developers through industry standard programming languages. The CUDA software stack is composed of several layers as illustrated in Figure 2: a hardware driver, an applicatio
26、n programming interface (API) and its runtime, and two higher-level mathematical libraries of common usage</p><p> C. CUDA Processing flow</p><p> In follow illustration, CUDA processing flow
27、is described as Figure 3. The first step: copy data from main memory to GPU memory, second: CPU instructs the process to GPU, third: GPU execute parallel in each core, finally: copy the result from GPU memory to main mem
28、ory.</p><p> SYSTEM HARDWARE</p><p> A.Tesla C1060 GPU Computing Processor</p><p> The NVIDIA® Tesla? C1060 transforms a workstation into a high-performance computer that ou
29、tperforms a small cluster. This gives technical professionals a dedicated computing resource at their desk-side that is much faster and more energy-efficient than a shared cluster in the data center. The NVIDIA® Tes
30、la? C1060 computing processor board which consists of 240 cores is a PCI Express 2.0 form factor computing add-in card based on the NVIDIA Tesla T10 graphics processing unit (GPU). This board is </p><p> A
31、computer system with an available PCI Express *16 slot is required for the Tesla C1060. For the best system bandwidth between the host processor and the Tesla C1060, it is recommended (but not required) that the Tesla C1
32、060 be installed in a PCI Express x 16 Gen2 slot. The Tesla C1060 is based on the massively parallel, many-core Tesla processor, which is coupled with the standard CUDA C Programming [14] environment to simplify many-cor
33、e programming.</p><p> B. Tesla S1070 GPU Computing System</p><p> The NVIDIA® Tesla? S1070 computing system speeds the transition to energy-efficient parallel computing. With 960 process
34、or cores and a standard simplifies application development, Tesla solve the world’s most important computing challenges--more quickly and accurately. The NVIDIA Computing System is a rack-mount Tesla T10 computing proces
35、sors. This system connects to one or two host systems via one or two PCI Express cables. A Host Interface Card (HIC) is used to connect each PCI Express cable t</p><p> The Tesla S1070 GPU computing system
36、is based on the T10 GPU from NVIDIA. It can be connected to a single host system via two PCI Express connections to that connected to two separate host systems via connection to each host. Each NVID corresponding PCI Exp
37、ress cable connects to GPUs in the Tesla S1070. If only one PCI connected to the Tesla S1070, only two of the GPUs will be used.</p><p> VI COCLUSIONS</p><p> In conclusion, we propose a paral
38、lel programming approach using hybrid CUDA and MPI programming, which partition loop iterations according to the number of C1060 GPU nodes n a GPU cluster which consist of one C1060 and one S1070.During the experiments,
39、loop progress assigned to one MPI processor cores in the same experiments reveal that the hybrid parallel multi-core GPU currently processing with OpenMP and MPI as a powerful approach of composing high performance clust
40、ers.</p><p><b> 附錄2</b></p><p> GPU集群的混合并行編程</p><p> 摘要一一目前,NVIDIA的CUDA是一種用于編寫高度并行的應(yīng)用程序的通用 的可擴展的并行編程模型。它提供了幾個關(guān)鍵的抽象化概念-層次的線程塊,共 享內(nèi)存和屏障同步。這種編程模式已經(jīng)被證明在多線程多核GPU和和從小規(guī)模擴 展到
41、數(shù)百個內(nèi)核是非常成功的:在整個工業(yè)界和學(xué)術(shù)界的科學(xué)家早已經(jīng)使用 CUDA來實現(xiàn)生產(chǎn)上顯著的速度提升和代碼研究。在本文中,我們提出了一個使 用混合CUDA和MPI編程的混合編程方法,根據(jù)在一個GPU集群中的C1060 GPU 節(jié)點的數(shù)目分區(qū)循環(huán)迭代,其中包括在一個C1060和一個S1070。循環(huán)迭代分配 給一個由處理器在相同的計算節(jié)點的核心運行的CUDA并行處理過的MPI進程。</p><p> 關(guān)鍵詞:CUDA
42、,GPU,MPI,OpenMP,混合,并行編程</p><p><b> 1.介紹</b></p><p> 如今,NVIDIA® (英偉達?)的CUDA是一種通用的編寫高度可擴展的并行編 程并行應(yīng)用程序的模型。它提供了幾個關(guān)鍵的抽象化概念-層次的線程塊,共享 內(nèi)存和障礙同步。這種編程模式已經(jīng)被證實在多線程多核心GPU編程和從小規(guī)模 擴展到數(shù)百個內(nèi)核是非
43、常成功的:科學(xué)家在工業(yè)界和學(xué)術(shù)界都已經(jīng)使用CUDA, 來實現(xiàn)生產(chǎn)上顯著的速度提升和代碼研究。</p><p> 在NVDIA的CUDA芯片里,所有的數(shù)百種方法來構(gòu)建自己的芯片,在這里我 們將嘗試使用NVIDIA® (英偉達?)提供用于并行計算的計算設(shè)備。本文提出了 一個解決方案不僅簡化在傳統(tǒng)的硬件加速通用應(yīng)用程序的使用,而且還保持應(yīng)用 程序代碼的便攜性。在這篇論文里,我們提出一種使用混合CUDA,Op
44、enMP和MPI 的并行編程方法,根據(jù)在一個集群中的性能疊加的多核節(jié)點,它會分區(qū)循環(huán)迭 代。因為迭代處理分配給一個MPI進程是在并行的相同的計算節(jié)點上由OpenMP 線程的處理器內(nèi)核運行的,則循環(huán)迭代的次數(shù)分配給一個計算節(jié)點,每個調(diào)度步 驟取決于在該節(jié)點的處理器內(nèi)核的數(shù)量。</p><p> 在本文中,我們提出了一種通用的方法,使用性能函數(shù)估計每個節(jié)點的性能 權(quán)重。為了驗證所提出的方法,我們建立了不同種類的集群
45、和一個同構(gòu)集群。在 我們的實現(xiàn)中,主節(jié)點也參與計算,而在以往的計劃,只有從節(jié)點做計算工作。</p><p> 實證結(jié)果顯示,在異構(gòu)和同構(gòu)集群環(huán)境中,提出的方法改進性能超過以往任何方</p><p> 本文的其余部分安排如下:在第2節(jié),我們介紹幾種典型和著名的自我調(diào)度 方案,和一個著名的用于分析計算機性能的基準系統(tǒng)。在第3節(jié)中,我們定義我 們的模型并且說明我們的方法。然后我們的系統(tǒng)配置的
46、三種類型放在第4節(jié),同 時在第4節(jié)還有實驗結(jié)果的應(yīng)用程序。結(jié)束語和今后的工作安排在第5節(jié)。</p><p><b> 背景回顧</b></p><p> GPU和CUDA的歷史</p><p> 在過去,我們必須使用多臺計算機的多個CPU并行計算,如所示的最后一個 芯片中開始并不需要大量的計算,然后逐漸人們有了游戲的需求,甚至是圖形和 3
47、D。由于3D加速器卡的需要出現(xiàn),我們逐漸地開始顯示芯片的加工,開始展現(xiàn) 出獨立的芯片,甚至在他們的CPU芯片中做了一個類似的顯示芯片,這就是GPU。</p><p> 我們知道,用GPU計算可以得到我們想要的答案,但為什么我們選擇使用 GPU?這幻燈片顯示了當前CPU和GPU的比較。首先,我們可以看到最多只有八 核心CPU,但是GPU已發(fā)展到260核心,從核心數(shù)量上,我們就可以知道有很多 GPU上的并行程序,盡
48、管它有個比較低頻率的核心,我們認為大量的并行計算能 力可能會弱于單獨的一個。第二方面,我們知道,在GPU的存儲器內(nèi),有更多訪 問主存儲器的次數(shù)。對比CPU和GPU上的訪問內(nèi)存容量,我們發(fā)現(xiàn),GPU的訪問 速度比CPU快10倍,CPU整體的差90GB/S,這是相當驚人的差距,當然,這也 意味著,當計算訪問大量的數(shù)據(jù)時能有一個良好的GPU來改善所需的時間。</p><p> CPU采用了先進的流量控制,如分支預(yù)測或
49、延遲分支和大容量高速緩存,以 減少內(nèi)存訪問延遲,GPU的高速緩存和一個相對較小的數(shù)流量控制也沒有它的簡 單,所以這種方法是使用大量的GPU計算設(shè)備來掩蓋內(nèi)存的問題,即,假設(shè)存取 存儲器GPU需要5秒的時間,但如果有100個線程同時獲取的時間為5秒,假設(shè) CPU時間存儲器訪問時間為0.1秒,如果100個線程訪問時,則時間是10秒。 因此,GPU并行處理可以用來隱藏缺點甚至超過存取記憶體的CPU的速度。GPU 的設(shè)計使得更多的晶體管致力于數(shù)
50、據(jù)處理,而非數(shù)據(jù)緩存和流量控制,如由圖1 所示。</p><p> 因此,我們通過GPU的優(yōu)勢來算術(shù)邏輯,試圖使用NVIDIA的多核心幫助計算,我們將提供NVIDIA的核心方案,以及NVIDIA公司提供的并行編程大量的 API操作來進行。</p><p> 我們必須使用NVIDIA公司GPU計算所提供的形式運行?不是的。我們可以 利用NVIDIA CUDA,ATI CTM和蘋果提出的O
51、penCL (開放計算語言),這些是CUDA 的發(fā)展正處于這個階段的語言,但隨著NVIDIA CUDA只支持自己的顯卡,我們可 以在這個階段看到使用GPU顯卡的所有NVIDIA的運營商,ATI也開發(fā)了自己的 CTM,蘋果還提出OpenCL (開放計算語言),它的OpenCL已經(jīng)被NVIDIA和ATI 支持,但ATI CTM通過使用GPU之間的關(guān)系,也放棄了另一語言。通常只支持單 精度浮點運算,在科學(xué)精準方面是一個非常重要的指標,因此,今
52、年出臺的計算 顯卡必須支持雙精度浮點運算。</p><p> 圖1 cpu的投入晶體管處理數(shù)據(jù)</p><p><b> CUDA編程</b></p><p> CUDA (統(tǒng)一計算設(shè)備架構(gòu)的縮寫)是一個由NVIDIA® (英偉達?)開發(fā)的并 行計算架構(gòu)。在NVIDIA圖形處理單元或者GPUs中,CUDA是計算引擎,它是可 以通
53、過業(yè)界標準來使用的軟件開發(fā)編程語言。CUDA軟件棧由幾個層組成,如在 圖2中所示:一個硬件驅(qū)動程序,應(yīng)用程序編程接口(API)和它的運行時間, 兩個較高級別的數(shù)學(xué)庫常見的用法,CUFFT和CUBLAS。硬件被設(shè)計為支持輕量級 的驅(qū)動程序和運行時間層,因此有高性能的表現(xiàn)。CUDA架構(gòu)支持一系列的計算 接口包括OpenGL和直接計算等。CUDA的并行編程模型是為了克服這一挑戰(zhàn)的同 時保持了較低的學(xué)習(xí)曲線,使熟悉標準編程語言(如C)的程序員便
54、于學(xué)習(xí)。其 核心是三個關(guān)鍵抽象概念一線程塊的層次結(jié)構(gòu),共享存儲,和屏障同步,即以最小的語言擴展簡單地展示給程序員。</p><p> 圖2統(tǒng)一計算設(shè)備架構(gòu)</p><p><b> CUDA處理流程</b></p><p> 后續(xù)說明,第一步:將數(shù)據(jù)從主內(nèi)存拷貝到GPU內(nèi)存;第二,CPU發(fā)送指示 到GPU;第三,GPU并行執(zhí)行;第四,拷貝
55、GPU內(nèi)存中的結(jié)果到主內(nèi)存中。</p><p><b> 系統(tǒng)硬件</b></p><p> A.TeslaC1060 GPU計算處理器</p><p> NVIDIA® (英偉達?) Tesla?系列C1060將工作站變?yōu)閮?yōu)于小的計算機集群的 一個高性能計算機。這給了行業(yè)技術(shù)一個在自己的辦公桌邊比在數(shù)據(jù)中心的共享 的群集更快,
56、更高效的專門的計算資源。NVIDIA® (英偉達?) Tesla?系列C1060 計算處理器板由240個核心組成,是一個PCI Express2.0的NVIDIA® (英偉達?) Tesla T10圖形處理單元(GPU)的基礎(chǔ)上的圖形計算附加卡。此板有針對性的 用于PCI Express的高性能計算(HPC)解決方案系統(tǒng)。特斯拉C106有933GFLOPs/ 秒的處理性能,標配4GBGDDR3內(nèi)存,102GB/s的帶
57、寬。</p><p> TeslaC1060需要一個可用的PCI ExpressX16插槽的計算機系統(tǒng)。為了獲 得主機的處理器和Tesla C1060之間最佳的系統(tǒng)帶寬,建議(但不要求)是Tesla C1060安裝在PCIExpressX16第二代插槽。特斯拉C1060基于大規(guī)模并行,多核心的Tesla處理器,再加上標準的CUDA的C語言編程的環(huán)境,以簡化多核心編程。</p><p>
58、 B.特斯拉S1070 GPU的計算系統(tǒng)</p><p> NVIDIA® (英偉達?) Tesla?系列S1070計算系統(tǒng)加快了到節(jié)能高效的并行計 算的過度。擁有960個處理器內(nèi)核和一個標準的C編譯器,簡化應(yīng)用程序的開發(fā), 特斯拉S1070尺度更快,更準確的解決世界上最重要的計算難題。NVIDIA® (英 偉達?) Tesla S1070計算系統(tǒng)是一個1U機架安裝系統(tǒng),它有四個特斯拉T10
59、計 算處理器。該系統(tǒng)通過一個或兩個PCI Express的線連接到一個或兩個主機系統(tǒng)。 主機接口卡(HIC)是用來連接每個PCIExpress連接到主機上。主機接口卡兼 容的 PCIExpress1X 和 PCIExpress2 個系統(tǒng)。</p><p> Tesla S1070 GPU計算系統(tǒng)T10 NVIDIA® (英偉達?) GPU的基礎(chǔ)上。它可以 通過兩個PCI Express連接到一個單獨的
60、主機系統(tǒng)連接到主機,或通過一個PCI Express連接到兩個獨立的主機系統(tǒng)連接到每一臺主機。每NVIDIA開關(guān)和相應(yīng) 的PCI Express電纜連接到Tesla S1070的兩個四GPU (圖形處理器)。如果只 有一個PCIExpress電纜連接的Tesla S1070,那么只有兩個GPU在使用。主機 必須有兩個可用的PCI Express槽和配置有兩個電纜,才能連接所有在特斯拉 S1070的四個GPU到單一的主機系統(tǒng)中。</
61、p><p><b> 實驗結(jié)論</b></p><p> 總之,我們提出了一個使用混合CUDA和MPI編程的并行編程方法,即根據(jù) C1060 GPU節(jié)點的數(shù)目分區(qū)的在包括一個C1060和一個S1070的GPU集群的循環(huán) 迭代。實驗過程中,分配給一個MPI進程的循環(huán)迭代由運行在相同的計算節(jié)點的 處理器內(nèi)核的CUDA并行地處理。實驗表明,由OpenMP和MPI處理的混合并
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GPU集群的并行編程通信接口研究.pdf
- 異構(gòu)GPU集群的并行編程模型及實現(xiàn).pdf
- 多核集群下一種混合并行編程模型的研究.pdf
- 基于SMP集群的MPI+OpenMP混合并行編程模型研究與應(yīng)用.pdf
- 混合并行計算環(huán)境多級并行化編程模式的研究.pdf
- 基于GPU集群的并行體繪制.pdf
- CPU-GPU混合編程模型上的并行譜聚類實現(xiàn).pdf
- 基于gpu的并行集群系統(tǒng)的發(fā)展
- 多核集群上的混合并行分子動力學(xué)計算研究.pdf
- 基于多核多線程的混合并行編程技術(shù)研究.pdf
- 基于GPU集群的PIC方法并行加速研究.pdf
- 基于異構(gòu)集群的混合并行計算模型的研究與應(yīng)用.pdf
- 基于GPU集群系統(tǒng)的MapReduce編程模型研究.pdf
- [雙語翻譯]---外文翻譯---同類集群上并行任務(wù)圖的進化調(diào)度(節(jié)選)
- 基于GPU集群的通用并行渲染系統(tǒng)設(shè)計與實現(xiàn).pdf
- [雙語翻譯]--外文翻譯---同類集群上并行任務(wù)圖的進化調(diào)度(英文)
- [雙語翻譯]--外文翻譯---同類集群上并行任務(wù)圖的進化調(diào)度(節(jié)選)
- GPU集群環(huán)境下支持向量機訓(xùn)練的異構(gòu)并行實現(xiàn).pdf
- 2011年--外文翻譯---同類集群上并行任務(wù)圖的進化調(diào)度
- 基于GPU集群的Mean Shift遙感圖像分割算法并行化研究.pdf
評論
0/150
提交評論