版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 本科生畢業(yè)設(shè)計(jì)(論文)外文翻譯</p><p> 題目: A new Semiconductor Thermometer for Geothermal Measurements </p><p> 學(xué) 院: 信息科學(xué)與工程學(xué)院 </p><p> 專(zhuān)業(yè)班級(jí): 電信1002班
2、 </p><p> 學(xué)生姓名: </p><p> 指導(dǎo)教師: </p><p> 2014年3月16日</p><p> A new Semiconductor Thermometer for Geothermal Measurement
3、s </p><p> By SATYABRATA DATTA1 ) </p><p> Summary :A portable solid state device designed and constructed for the measurement of temperature variation with depth inside a
4、borehole is described. Saturation current (which is highly dependent on ambient temperature) in a reverse biased PN junction has been utilised for the purpose of measurement. The equipment is inexp
5、ensive and possesses several advantages over other types of instruments for geothermal measurement regarding simplicity i</p><p> 1. Introduction </p><p> Usually, thermistors
6、are utilised as temperature pick-up element in borehole geothermal measurements [1]2 ) . This is chiefly because thermistors have high negative temperature coefficient of resistance. In the method
7、of measurement with thermistor, a resistance bridge is used in association with an oscillator [2] or a D.C. [3] voltage source. A thermistor with the cable forms one arm of the bridge. Out-o
8、f-balance volt- age due to change</p><p> The design and construction of the equipment described in this paper was under- taken for the use of a glacier expedition party of the Ge
9、ological Survey of India to study temperature variations with depth inside boreholes in glacier. Obviously, the equipment to suit the purpose should be light and simple in construction, and its
10、 performance should not be susceptible to adverse surface climatic variations likely to be encountered. </p><p> 2. Description </p><p> The working principle of the instrumen
11、t is as follows: </p><p> The current (I) flowing through a PN junction is given by the relation </p><p> I ≈ i0 (e V/VT -1), (1) </p>
12、<p> Geophysics Division, Geological Survey of India, Calcutta-16 (India). - This paper is published by the kind permission of the Director General, Geological Survey of India. </p><p> Numbers
13、 in brackets refer to References, page 126.</p><p> Where io = junction saturation current, </p><p> V = applied junction voltage which is + ve in the forward direction, <
14、;/p><p> VT = Junction barrier voltage = (K T)/q, </p><p> K = Boltzman constant, </p><p> T = Junction temperature in 0 K</p><p> q = electronic cha
15、rge. </p><p> When the junction applied voltage is in the forward direction (+ ve), the exponential term in equation (1) predominates and as a result the current increases exponent-
16、 tally with applied voltage. For applied voltage several times larger than VT (VT is about 26 mV at 25 0 C )in the reverse direction, the current becomes independent of the applied voltage and
17、 practically remains constant at the saturation current level i0 so long as </p><p> The electronic circuit diagram of the instrument is shown in figure 1. Two reverse biased base-
18、collector PN junctions of Germanium transistors are connected in parallel so that individual saturation currents of the two junctions add up. These two transistors in parallel form temperature se
19、nsing head and are in thermal contact with the borehole fluid. Resultant saturation current is then amplified by a third transistor which acts as a </p><p> Vol. 61, 1965/I1) A new
20、 Semiconductor Thermometer </p><p> A photograph of the complete instrument consisting of the surface equipment, cable wound in the winch and also the probe is shown in figure 3. The two sensing transist
21、ors together with the amplifying transistor are mounted in a perspex block which is a poor thermal conductor with the metal caps protruding outside so that they can attain ambient temperature in short time. This perspex
22、block is cemented at the end of a perfectly watertight brass tube. A thin copper cup (not shown in the photogra</p><p> It is well known that the performance of a D.C. transistor current amplifier is highly
23、 affected by the changes in the ambient temperature. This is mainly due to the shift in the operating point caused by the changes in current gain factor and i0 with temperature. For this, the amplifier cannot be incorpor
24、ated in the surface equipment which may be subjected to unforeseen temperature fluctuations during operation. To avoid the effect of amplifier drift on the temperature measurement,the amplifying</p><p> pro
25、be end and the resultant variation of i which is equal to 2(1 + β) i0 is noted for measurement. For operation, the probe with the cable is lowered inside the borehole upto the required depth and the current indica
26、ted by the microammeter in the steady state which is reached in about two minute's time, is noted. The temperature under measurement is then deduced from the calibration curve. </p><p> 3. Conclusion a
27、nd discussion </p><p> The present instrument has been specially designed for the study of temperature inside a glacier borehole. The measurement accuracy is dependent on the temperature under measurement.
28、At low temperature (near --20 0 C) when the current i is small, the measurement accuracy is mainly limited by the meter sensitivity. The limitation in accuracy at such low temperature is also due to the fact that the su
29、rface leakage current, however small it may be made, becomes comparable to the saturation current</p><p> This instrument suffers from the common draw back due to drift as the other type which utilises ther
30、mistor caused by the unavoidable change in the characteristic of the sensing element due to aging. Effect of this drift in the present instrument is small as the calibration curve has been found to repeat itself with
31、out any appreciable deviation. Similar instrument with some modifications, if necessary may also be utilised for the study of temperature variations with depth in oceanographic i</p><p> 4. Acknowledgemen
32、ts</p><p> The author is grateful to Sri L. N. KAILASAM, Chief Geophysicist for his keen interest in the work and encouragement, and to Sri D. GUPTA SARMA, Senior Geophysicist for his helpful suggest
33、ions. </p><p> REFERENCES</p><p> [1] A. D. MISENER and A. E. BECK, The measurement of heat flow over land, Methods and Techniques in Geophys. 1 (1960), 10. </p><p> [2] G. N
34、. NEWS~EAD and A. E. BECk, Borehole Temperature measuring Equipment and Geothermal flux in Tasmania, Austral .J. Phys. 6 (1953), 480.</p><p> [3] A. C. ANDERSON, Temperature measurement with thermistors,
35、Electronic and Radio Engineer 35 (1958), 80. </p><p> (Received 12th May 1965) </p><p> 一種新型的測(cè)量地?zé)岬陌雽?dǎo)體溫度計(jì)</p><p> By SATYABRATA DATTA1 </p><p> 摘要: 一種便攜式的呈固態(tài)的被設(shè)計(jì)和
36、構(gòu)造成,為了測(cè)量溫度變化在鉆井內(nèi)部較深的區(qū)域在如下被描述。 飽和電流(很大程度上取決于于周?chē)h(huán)境的溫度)在反向偏置的PN結(jié)中已經(jīng)被用來(lái)達(dá)到測(cè)量的目的。 設(shè)備并不是十分昂貴并且具有一些優(yōu)勢(shì)在設(shè)備的簡(jiǎn)易的結(jié)構(gòu)和操作方面上,同比于其他類(lèi)型的測(cè)量地?zé)岬臏y(cè)量?jī)x器。 </p><p> 1.介紹 </p><p> 通常來(lái)說(shuō),熱敏電阻被用作溫度的取樣元件在鉆井的地?zé)釡囟葴y(cè)
37、量[1])。這主要是因?yàn)闊崦綦娮栌泻芨叩呢?fù)溫度阻抗系數(shù)。在用熱敏阻抗測(cè)量溫度的方法中,一個(gè)電阻橋被用來(lái)與一個(gè)振蕩器和一個(gè)直流電壓源相連接。一個(gè)帶有電纜的熱敏電阻形成一個(gè)反比的電橋。失去平衡的電壓由于熱敏電阻的改變是由于溫度的改變被記錄在被放大之后,當(dāng)帶有電纜的熱敏電阻被下放于鉆井之中后。在測(cè)試下的溫度被從一個(gè)校準(zhǔn)圖表或校準(zhǔn)曲線中所展示的讀取后,不平衡的電壓反抗溫度在實(shí)驗(yàn)室預(yù)先的構(gòu)造中并且是被控制得情況下。電壓源的錯(cuò)誤在這種測(cè)量溫度的方法
38、中很大程度上是由于熱敏電阻和放大器的特性的漂移所導(dǎo)致的,同樣由于不可預(yù)料的改變?cè)陔娎|和其他的電阻橋臂中。</p><p> 被描述在這片論文當(dāng)中這個(gè)儀器的設(shè)計(jì)和構(gòu)造是被應(yīng)用在印度地質(zhì)調(diào)查的冰川探險(xiǎn)隊(duì)當(dāng)中,在印度地質(zhì)調(diào)查中研究溫度的變化隨著在冰川鉆井內(nèi)部中深度的變化。很明顯地,這個(gè)儀器為了適應(yīng)冰川探險(xiǎn)隊(duì)的這個(gè)調(diào)查目的應(yīng)該既輕便且結(jié)構(gòu)簡(jiǎn)便,同時(shí)這個(gè)儀器的性能不應(yīng)該容易受表面很容易遭受到的相反氣候變化的影響。
39、 </p><p><b> 2 .描述</b></p><p> 儀器的工作原理如下所示:</p><p> 電流(I)流經(jīng)PN偏節(jié)有以下關(guān)系: I ≈ i0 (e V/VT -1), (1)</p><p> 1) Geophysics Division, Geolog
40、ical Survey of India, Calcutta-16 (India). - This paper is published by the kind permission of the Director General, Geological Survey of India. </p><p> 2) Numbers in brackets refer t
41、o References, page 126. </p><p><b> 其中 </b></p><p><b> i0是結(jié)飽和電流,</b></p><p> V是應(yīng)用結(jié)電壓也就是 +ve 正向電壓,</p><p> VT 是結(jié)勢(shì)壘電壓= (K T)/q, ,</p&g
42、t;<p><b> K是波爾茨曼常數(shù),</b></p><p> T 是節(jié)溫度在0攝氏度(單位:攝氏度)</p><p><b> Q是電子電荷量。</b></p><p> 當(dāng)結(jié)的應(yīng)用電壓是正向電壓(+ve)時(shí),在方程(1)中的指數(shù)項(xiàng)占主導(dǎo),因此結(jié)果是電流隨著應(yīng)用電壓呈指數(shù)次增加。因?yàn)閼?yīng)用電壓幾倍
43、大于VT(VT是在25攝氏度時(shí)是26mv)在相反的方向,電流變得獨(dú)立于應(yīng)用電壓,并且應(yīng)用電壓實(shí)際上保持恒定不變的在飽和電流i0的級(jí)別,只要在發(fā)生故障或者雪崩電壓不超過(guò)應(yīng)用電壓。實(shí)際上飽和電流形成是由于因?yàn)榈責(zé)岬臏囟仍赑區(qū)和N區(qū)產(chǎn)生的少數(shù)載流子遷移運(yùn)動(dòng)而產(chǎn)生地電流。因此,飽和電流的大小很大程度取決于溫度和實(shí)際的指數(shù)增加方式。對(duì)于這個(gè)被設(shè)計(jì)的儀器,對(duì)于這個(gè)被設(shè)計(jì)的高度依賴(lài)于飽和電流,這個(gè)飽和電流實(shí)際上不受電壓源的影響的特性被應(yīng)用在測(cè)量溫度的
44、目的上。</p><p> 對(duì)于這個(gè)測(cè)溫儀器的電子電路的電路圖示分析如下圖1所示。鍺晶體管的兩個(gè)反偏集電極PN結(jié)以并聯(lián)方式鏈接以便兩個(gè)結(jié)的各自的飽和電流的疊加。兩個(gè)晶體管以并聯(lián)的方式置于溫度感測(cè)頭并且熱接觸鉆井內(nèi)的液體。合成的飽和電流被第三個(gè)作為直流電流放大器的晶體管來(lái)放大。被放大的電流疊加上全部的飽和電流的值通過(guò)一個(gè)敏感的微安培計(jì)的探測(cè)結(jié)來(lái)測(cè)量。電流流經(jīng)這個(gè)儀表得到2 (1 + β )倍的i0, β是電
45、流放大器的放大倍數(shù)。</p><p> Vol. 61, 1965/I1) 一種新型的半導(dǎo)體測(cè)溫計(jì)</p><p> 照片內(nèi)包含了一套完整的儀器設(shè)備,包括了表面設(shè)備,電纜絞車(chē)的傷口以及如圖所示 3 的探針。兩個(gè)探測(cè)晶體管與放大器的晶體管一起被安裝在溫度傳導(dǎo)比較差的導(dǎo)體有機(jī)玻璃載體中,并且?guī)в醒由斐鰜?lái)的金屬帽以便這個(gè)儀器在短時(shí)間內(nèi)可以測(cè)量得到外界的溫度。這個(gè)有機(jī)玻璃載體在底部以注入的方式
46、與防水的黃銅完美相連(構(gòu)造成完全防水并且密封的空間)。一個(gè)薄銅杯(在照片中沒(méi)有顯示出來(lái))在與晶體管的熱接觸中被用作保護(hù)晶體管在測(cè)溫的過(guò)程中可能產(chǎn)生的各種破壞,當(dāng)探針被下放于鉆井的內(nèi)部時(shí)。儀器的表面包含了一個(gè)有兩節(jié)干電池提供的電壓的電壓源,這兩節(jié)干電池同時(shí)串聯(lián)在一個(gè)靈敏安培表上來(lái)調(diào)節(jié)分流以便這個(gè)靈敏安培表可以測(cè)量電流在零下18度到零上10的變化區(qū)間范圍之內(nèi)。一個(gè)雙芯的電纜從儀器的表面接出被連進(jìn)底部的黃銅管探針中并且電纜與探針的相聯(lián)處是被完
47、全防水的環(huán)形密封給封閉住的(同樣也是構(gòu)造成完全封閉防水,以保證測(cè)量精度)。必要的電子線路的聯(lián)接已經(jīng)被完成在探針中,并且采取了一些特別的措施以確保儀器表面在電纜導(dǎo)體和晶體管的通道之間沒(méi)有電流的泄露。校正曲線圖解釋了變化log10i,電流i以毫安級(jí)的大小通過(guò)儀表對(duì)抗溫度(t)在0攝氏度的結(jié)構(gòu),</p><p> 眾所周知的是直流晶體管電流放大器非常容易被外界溫度的變化所影響。這主要是由于操作點(diǎn)的轉(zhuǎn)換所引起的電流增益
48、和i0的的變化在溫度的影響下。針對(duì)于此,放大器不能被合并在表面儀器中,如合并在表面儀器中可能會(huì)遭受不可預(yù)見(jiàn)的溫度波動(dòng)在操作過(guò)程中。為了避免在測(cè)量溫度時(shí)的漂移對(duì)于放大器的影響,其放大作用的晶體管同樣也被安裝在有機(jī)玻璃塊中位于探針底部并且電流i的變化區(qū)域是 2(1 + β) i0是在測(cè)量中得到的。</p><p> 對(duì)于操作來(lái)說(shuō),探針與電纜被下放于鉆井中直到達(dá)到所需要的深度并且又安培計(jì)顯示的呈穩(wěn)定狀態(tài)打到大概兩
49、分鐘左右即可被記錄。測(cè)量的溫度隨后被對(duì)比同校準(zhǔn)曲線。</p><p><b> 3.總結(jié)與討論</b></p><p> 目前這個(gè)儀器僅僅是專(zhuān)門(mén)被設(shè)計(jì)用來(lái)研究冰川鉆井年內(nèi)部的溫度。測(cè)量的精度依賴(lài)于測(cè)量時(shí)的溫度。在低溫的情況下(接近零下20攝氏度時(shí)),這時(shí)測(cè)量電流非常小,測(cè)量的精度主要局限于靈敏安培表的靈敏度。在精確度上的局限在如此低的溫度中同樣也有一部分原因是由于
50、儀器表面電流泄露的事實(shí),然而這是可以被控制在非常小的范圍內(nèi)的,變得可以與飽和電流相比。這個(gè)被設(shè)計(jì)的儀器運(yùn)輸非常方便適應(yīng)于的溫度介于零下15攝氏度到零上10攝氏度。測(cè)量精度大概是0.2攝氏度,0.8攝氏度以及0.05攝氏度當(dāng)測(cè)試的溫度分別在在零下10攝氏度,0攝氏度,以及零上5攝氏度。這個(gè)儀器可能被制造的更加靈敏,通過(guò)增加并聯(lián)探測(cè)晶體管的數(shù)量或者通過(guò)另一種方法通過(guò)增加額外的級(jí)聯(lián)放大器。同樣的原理可能被用在更高的溫度測(cè)量當(dāng)中。必須被提及的是
51、在接觸過(guò)程中最高的溫度不應(yīng)該超過(guò)正常的晶體管的適應(yīng)的工作溫度(大概在50攝氏度對(duì)于鍺晶體管來(lái)說(shuō))。對(duì)于硅晶體管來(lái)說(shuō)卻是很有必要減少電壓源的電壓為了削弱放大器集電極耗散率。</p><p> 這個(gè)測(cè)溫儀器不受好評(píng)由于常見(jiàn)的儀器故障回收,由于產(chǎn)生的飄移當(dāng)使用熱敏電阻所引起的在探測(cè)原件上不可避免的變化由于年代問(wèn)題。目前的儀器由于漂移所產(chǎn)生的影響是很微小的當(dāng)校準(zhǔn)曲線重復(fù)刻畫(huà)時(shí),基本上沒(méi)有任何明顯的偏差。相似的一些有所改
52、變的儀器,如果有必要的話可能也會(huì)被用作研究溫度的變化在深海調(diào)查中。</p><p><b> 4.鳴謝</b></p><p> 作者非常感謝Sri L. N. KAILASAM ,首席地球物理學(xué)家,感謝他的工作興趣和鼓勵(lì),并且感謝Sri D. GUPTA SARMA,高級(jí)地理學(xué)家,感謝他有價(jià)值的建議。</p><p><b>
53、; 5 .參考書(shū)目</b></p><p> [1] A. D. MISENER and A. E. BECK, The measurement of heat flow over land, Methods and Techniques in Geophys. 1 (1960), 10. </p><p> [2] G. N. NEWS~EAD and A. E.
54、 BECk, Borehole Temperature measuring Equipment and Geothermal flux in Tasmania, Austral .J. Phys. 6 (1953), 480.</p><p> [3] A. C. ANDERSON, Temperature measurement with thermistors, Electronic and Radio
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- &amp#183;半導(dǎo)體溫度計(jì)的設(shè)計(jì)實(shí)驗(yàn)報(bào)告
- 數(shù)字溫度計(jì)外文翻譯
- 比較體溫計(jì)和常用溫度計(jì)教法
- 一種基于高溫輻射的半導(dǎo)體溫差發(fā)電器的研究.pdf
- 【計(jì)量標(biāo)準(zhǔn)】jjf 1107-2017 測(cè)量人體溫度的紅外溫度計(jì)校準(zhǔn)規(guī)范
- 使用紅外線鼓膜溫度計(jì)測(cè)量鼓膜溫度的準(zhǔn)確性外文翻譯
- 使用紅外線鼓膜溫度計(jì)測(cè)量鼓膜溫度的準(zhǔn)確性外文翻譯
- 15:液體溫度計(jì)的構(gòu)造與工作原理
- 15:液體溫度計(jì)的構(gòu)造與工作原理
- 使用紅外線鼓膜溫度計(jì)測(cè)量鼓膜溫度的準(zhǔn)確性外文翻譯
- 半導(dǎo)體溫度控制儀的研制.pdf
- 半導(dǎo)體溫度控制儀硬件設(shè)計(jì)
- 使用紅外線鼓膜溫度計(jì)測(cè)量鼓膜溫度的準(zhǔn)確性外文翻譯.doc
- 使用紅外線鼓膜溫度計(jì)測(cè)量鼓膜溫度的準(zhǔn)確性外文翻譯.doc
- ds18b20 數(shù)字溫度計(jì)外文翻譯
- 溫度與溫度計(jì)
- ds1820 單總線數(shù)字溫度計(jì)外文翻譯
- 外文翻譯---ds18b20 數(shù)字溫度計(jì)
- 溫度和溫度計(jì)
- 數(shù)字溫度計(jì)論文數(shù)字溫度計(jì)設(shè)計(jì)論文
評(píng)論
0/150
提交評(píng)論