中考二次函數(shù)壓軸題解題通法(2018.4)_第1頁
已閱讀1頁,還剩26頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、第1頁共27頁中考二次函數(shù)壓軸題中考二次函數(shù)壓軸題———解題通法研究解題通法研究幾個自定義概念:1三角形基本模型:有一邊在X軸或Y上,或有一邊平行于X軸或Y軸的三角形稱為三角形基本模型。2動點(或不確定點)坐標“一母示”:借助于動點或不確定點所在函數(shù)圖象的解析式,用一個字母把該點坐標表示出來,簡稱“設橫表縱”。如:動點P在y=2x1上,就可設P(t2t1).若動點P在y=,則可設為P(t,)當然若動點M在X軸上,則設為(t0).若動點2

2、321xx??2321tt??M在Y軸上,設為(0,t)3動三角形:至少有一邊的長度是不確定的,是運動變化的?;蛑辽儆幸粋€頂點是運動,變化的三角形稱為動三角形。4動線段:其長度是運動,變化,不確定的線段稱為動線段。5定三角形:三邊的長度固定,或三個頂點固定的三角形稱為定三角形。6定直線:其函數(shù)關系式是確定的,不含參數(shù)的直線稱為定直線。如:y=3x-6。7X標,Y標:為了記憶和闡述某些問題的方便,我們把橫坐標稱為x標,縱坐標稱為y標。8直

3、接動點:相關平面圖形(如三角形,四邊形,梯形等)上的動點稱為直接動點,與之共線的問題中的點叫間接動點。動點坐標“一母示”是針對直接動點坐標而言的。1.求證“兩線段相等”的問題:求證“兩線段相等”的問題:借助于函數(shù)解析式,先把動點坐標用一個字母表示出來;然后看兩線段的長度是什么距離(即是“點點”距離,還是“點軸距離”,還是“點線距離”,再運用兩點之間的距離公式或點到x軸(y軸)的距離公式或點到直線的距離公式,分別把兩條線段的長度表示出來,

4、分別把它們進行化簡,即可證得兩線段相等。2、2、“平行于“平行于y軸的動線段長度的最大值”的問題:軸的動線段長度的最大值”的問題:由于平行于y軸的線段上各個點的橫坐標相等(常設為t),借助于兩個端點所在的函數(shù)圖象解析式,把兩個端點的縱坐標分別用含有字母t的代數(shù)式表示出來,再由兩個端點的高低情況,運用平行于y軸的線段長度計算公式,把動線段的長度就表示成為一個自變量為t,且開口向下的二次函數(shù)解析yy下上式,利用二次函數(shù)的性質(zhì),即可求得動線段

5、長度的最大值及端點坐標。3、求一個已知點關于一條已知直線的對稱點的坐標問題:求一個已知點關于一條已知直線的對稱點的坐標問題:先用點斜式(或稱K點法)求出過已知點,且與已知直線垂直的直線解析式,再求出兩直線的交點坐標,最后用中點坐標公式即可。4、“拋物線上是否存在一點,使之到定直線的距離最大”的問題:“拋物線上是否存在一點,使之到定直線的距離最大”的問題:(方法1)先求出定直線的斜率,由此可設出與定直線平行且與拋物線相切的直線的解析式(注

6、意該直線與定直線的斜率相等,因為平行直線斜率(k)相等),再由該直線與拋物線的解析式組成方程組,用代入法把字母y消掉,得到一個關于x的的一元二次方程,由題有△=4ac=0(因為該直2b線與拋物線相切,只有一個交點,所以4ac=0)從而就可求出該切線的解析式,再把該切線解析式2b與拋物線的解析式組成方程組,求出x、y的值,即為切點坐標,然后再利用點到直線的距離公式,計算該切點到定直線的距離,即為最大距離。第3頁共27頁,轉(zhuǎn)化為一個開口向下

7、的二次函數(shù)問題來求出最大1()x2Syy??動三角形上(動)下(動)右(定)左(定)(x)值。2“三邊均動的動三角形面積最大”的問題(簡稱“三邊均動”的問題):先把動三角形分割成兩個基本模型的三角形(有一邊在x軸或y軸上的三角形,或者有一邊平行于x軸或y軸的三角形,稱為基本模型的三角形)面積之差,設出動點在x軸或y軸上的點的坐標,而此類題型,題中一定含有一組平行線,從而可以得出分割后的一個三角形與圖中另一個三角形相似(常為圖中最大的那一

8、個三角形)。利用相似三角形的性質(zhì)(對應邊的比等于對應高的比)可表示出分割后的一個三角形的高。從而可以表示出動三角形的面積的一個開口向下的二次函數(shù)關系式,相應問題也就輕松解決了。9.9.“一拋物線上是否存在一點,使之和另外三個定點構(gòu)成的四邊形面積最大的問題”:“一拋物線上是否存在一點,使之和另外三個定點構(gòu)成的四邊形面積最大的問題”:由于該四邊形有三個定點,從而可把動四邊形分割成一個動三角形與一個定三角形(連結(jié)兩個定點,即可得到一個定三角形

9、)的面積之和,所以只需動三角形的面積最大,就會使動四邊形的面積最大,而動三角形面積最大值的求法及拋物線上動點坐標求法與7相同。1010、“定四邊形面積的求解”問題:“定四邊形面積的求解”問題:有兩種常見解決的方案:方案(一):連接一條對角線,分成兩個三角形面積之和;方案(二):過不在x軸或y軸上的四邊形的一個頂點,向x軸(或y軸)作垂線,或者把該點與原點連結(jié)起來,分割成一個梯形(常為直角梯形)和一些三角形的面積之和(或差),或幾個基本模

10、型的三角形面積的和(差)11.11.“兩個三角形相似”的問題:“兩個三角形相似”的問題:兩個定三角形是否相似:(1)已知有一個角相等的情形:運用兩點間的距離公式求出已知角的兩條夾邊,看看是否成比例?若成比例,則相似否則不相似。(2)不知道是否有一個角相等的情形:運用兩點間的距離公式求出兩個三角形各邊的長,看看是否成比例?若成比例,則相似否則不相似。一個定三角形和動三角形相似:(1)已知有一個角相等的情形:先借助于相應的函數(shù)關系式,把動點

11、坐標表示出來(一母示),然后把兩個目標三角形(題中要相似的那兩個三角形)中相等的那個已知角作為夾角,分別計算或表示出夾角的兩邊,讓形成相等的夾角的那兩邊對應成比例(要注意是否有兩種情況),列出方程,解此方程即可求出動點的橫坐標,進而求出縱坐標,注意去掉不合題意的點。(2)不知道是否有一個角相等的情形:這種情形在相似性中屬于高端問題,破解方法是,在定三角形中,由各個頂點坐標求出定三角形三邊的長度,用觀察法得出某一個角可能是特殊角,再為該角

12、尋找一個直角三角形,用三角函數(shù)的方法得出特殊角的度數(shù),在動點坐標“一母示”后,分析在動三角形中哪個角可以和定三角形中的那個特殊角相等,借助于特殊角,為動點尋找一個直角三角形,求出動點坐標,從而轉(zhuǎn)化為已知有一個角相等的兩個定三角形是否相似的問題了,只需再驗證已知角的兩邊是否成比例?若成比例,則所求動點坐標符合題意,否則這樣的點不存在。簡稱“找特角,求(動)點標,再驗證”。或稱為“一找角,二求標,三驗證”。12.、“某函數(shù)圖象上是否存在一點

13、,使之與另兩個定點構(gòu)成等腰三角形”的問題:“某函數(shù)圖象上是否存在一點,使之與另兩個定點構(gòu)成等腰三角形”的問題:首先弄清題中是否規(guī)定了哪個點為等腰三角形的頂點。(若某邊底,則只有一種情況;若某邊為腰,有兩種情況;若只說該三點構(gòu)成等腰三角形,則有三種情況)。先借助于動點所在圖象的解析式,表示出動點的坐標(一母示),按分類的情況,分別利用相應類別下兩腰相等,使用兩點間的距離公式,建立方程。解出此方程,即可求出動點的橫坐標,再借助動點所在圖象的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論