外文翻譯--溫差發(fā)電技術(shù)的研究進展及現(xiàn)狀_第1頁
已閱讀1頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p>  Thermoelectric power generation, also called thermoelectric power generation, is a kind of green environmental protection.</p><p>  The thermoelectric power generation technology has the advantage

2、s of simple structure, strong and durable, no moving parts, no noise, long service life, etc.. Can make reasonable use of solar energy, geothermal energy, industrial waste heat and low grade energy into electricity. The

3、research of thermoelectric power generation technology began in 1940s. Because of its significant advantages, thermoelectric power generation in aviation, military and other fields has been widely used, the United St<

4、/p><p>  Is introduced in this paper principle of thermoelectric technology, reviews the research progress and status quo of domestic and foreign, to common commercial thermoelectric module as an example, the p

5、ower generation efficiency of thermoelectric power generation in the presence of low, thermoelectricity component and short service life, reliability are analyzed, and countermeasures are put forward. With the improvemen

6、t of the performance of thermoelectric materials and the increase of the reliab</p><p>  1 working principle</p><p>  Complete the temperature difference, so that high temperature thermoelectric

7、 power is based on thermoelectric material Seebeck effect developed a power generation technology, the P type and N type two kind of different types of thermoelectric materials (P type hole rich materials, N type is elec

8、tron rich material) is connected to the formation of a PN junction, is placed in a high temperature state, and the other end is formed at low temperature, due to the thermal excitation, p if there exists </p><

9、p>  2.1 research progress in foreign countries</p><p>  Since the discovery of the Seebeck effect since 1821 Seebeck, foreign the thermoelectric generation of a large number of studies, in 1947, first the

10、 thermoelectric generator available, efficiency is only 1.5%. In 1953, Loffe academician research team successfully developed the use of coal oil lamps, tractor heat as a heat source of thermoelectric power plant, in the

11、 use of electricity difficult areas for small power supply. In the sixties of the 20th century, some materials with good thermoelect</p><p>  2.2 domestic research progress</p><p>  Domestic res

12、earch on thermoelectric power generation is relatively late, and it is mainly focused on the research of the theory and the preparation of thermoelectric materials. Chen Jincan research group from 1980s began to study th

13、e basic theory of thermoelectric generator, the thermoelectric properties of the optimization and analysis, get a lot of meaningful results [no. Qu Jian et al. Li Yudong et al. Analysis of the performance of the low temp

14、erature difference generator from the point of v</p><p>  Etc. a temperature thermoelectric coupling analysis model, to the numerical calculation method analysis the thermoelectric material parameters and th

15、eir variation on electrical characteristics of, draw the conclusion, material thermal conductivity, electrical resistivity and Seebeck coefficient on the generator efficiency of conversion are nonlinear, which influence

16、coefficient of thermal conductivity of the most obvious. De Peng, and analysis the thermoelectric thermal environment, loop load re</p><p>  And the environment, system and system of flux relation, propertie

17、s of the system to make optimization based thermoelectric generator optimization design model, and using VB 6.0 (Microsoft Visual Basic 6.0) language as a development tool, ActiveX Data Object Access database, the prepar

18、ation of the thermoelectric generator design software. Qian Weiqiang through study on the electrical properties of low grade heat source of small semiconductor temperature difference, summarizes the electromotive f</p

19、><p>  3.1 generation efficiency</p><p>  At present, the efficiency of thermoelectric power generation is generally 5%-7%, far less than 40% of thermal power generation. The main reason is that th

20、e performance of thermoelectric materials is not good, on the other hand is the matching of electrical appliances factory.</p><p>  3.1.1 thermoelectric materials</p><p>  Thermoelectric materia

21、ls, as the core part of thermoelectric devices, directly determine the performance of the device. The optimal value of ZT is the most important parameter to measure the performance of thermoelectric materials. The higher

22、 the ZT value, the better the thermoelectric properties of the materials, the higher the energy conversion efficiency. Bi2T3; room temperature ZT value of about 1, is the most widely used thermoelectric materials. But th

23、e thermoelectric power generation effi</p><p>  Gas phase deposition (MOCVE) method to prepare Bi-Te based alloy film, ZT value reached 2.4 300K. Dresselhaus of Bi nanowires and quantum well system after a l

24、arge number of studies predicted that the quantum confinement effect can be obtained by superlattice ZT value of more than 3 of the material. Nano thermoelectric materials is another hot research topic in the field of th

25、ermoelectric materials, and the achievements are outstanding in the field of Zhejiang University. Zhao Xinbing and other </p><p>  3.1.2 matching problem</p><p>  Output power and power generati

26、on efficiency of thermoelectric generator and high temperature end temperature (Th). Low temperature (Tc), thermoelectric power generation circuit current (I), load resistance (R), electrical resistance (R) and other fac

27、tors are closely related. Under different conditions, the difference of the performance of the thermoelectric generator is great. Qu Jian and other applications of finite time thermodynamic theory to analyze the working

28、performance of thermoelectric</p><p>  3.2 reliability issues</p><p>  The existence of 3.2.1 and mechanical stress</p><p>  To common sandwich type thermoelectric module, for examp

29、le, to achieve high power generation efficiency, usually require power components in hot and cold end forming a larger temperature difference, which will cause cold end is connected at the end of the shrinkage or thermal

30、 connecting sheet expansion, resulting in mechanical stress. Mechanical stress on the existence of the rigid joints or P, n arm is easy to fracture may eventually lead to the damage of the thermocouple, so as to shorten

31、the </p><p>  3.2.2 environmental factors</p><p>  (1) moisture. There are at least three kinds of materials, thermoelectric materials, solder and connecting sheet materials. The ingress of mois

32、ture, in the cold junction near the condensation, forming primary batteries, thus produced the effect of electrolytic corrosion at the joint, lead solder resistance increases, final welding head was completely damaged. I

33、t is better to make the thermoelectric components work in vacuum or to protect the insulation material;</p><p>  (2) high temperature. High temperature can damage the accelerator. The reason is the oxidation

34、 and sublimation of the solder, which accelerates the diffusion of copper and other impurities into the thermoelectric materials. There are reports of 300 K, the diffusion rate of impurities is 10-6 cm/s impurity diffusi

35、on caused by material Seebeck coefficient and the electrical conductivity decreases rapidly. At present, the commonly used solution is in the copper connection piece and the element end </p><p>  4 conclusio

36、ns</p><p>  Due to its unique advantages, the thermoelectric power generation technology has shown a good application prospect in aerospace and military fields. At the same time, as a kind of green environme

37、ntal protection, the application of the civil field in recent years has developed rapidly. Although the efficiency of thermoelectric power generation is generally lower than 10%, but with the electrical research and deve

38、lopment of new high performance thermoelectric materials and reliable performance of </p><p>  溫差發(fā)電技術(shù)的研究進展及現(xiàn)狀</p><p>  溫差發(fā)電又叫熱電發(fā)電,是一種綠色環(huán)保的發(fā)電方式。溫差發(fā)電技術(shù)具有結(jié)構(gòu)簡單,堅固耐用,無運動部件,無噪聲,使用壽命長等優(yōu)點??梢院侠砝锰柲?、地熱能、

39、工業(yè)余熱廢熱等低品位能源轉(zhuǎn)化成電能。溫差發(fā)電技術(shù)的研究最早開始于20世紀40年代。由于其顯著的優(yōu)點,溫差發(fā)電在航空、軍事等領(lǐng)域得到了廣泛的應(yīng)用,美國,前蘇聯(lián)先后研發(fā)了數(shù)千個放射性同位素或核反應(yīng)堆溫差發(fā)電器用作空問、海洋裝置的電源。隨著化石能源的日趨枯竭,美國、日本、歐盟等發(fā)達國家更加重視溫差發(fā)電技術(shù)在民用領(lǐng)域的研究,并取得了長足的進展。國內(nèi)溫差發(fā)電方面的研究,主要集中在發(fā)電器理論和熱電材料制備方面的研究,旨在為溫差發(fā)電器的優(yōu)化提供理論指

40、導(dǎo)和制備性能優(yōu)良的熱電材料,雖然我國是世界上最大的半導(dǎo)體熱電器件輸出國,但是在溫差發(fā)電器綜合設(shè)計和應(yīng)用方面的研究還很欠缺,因此研究溫差發(fā)電有著非常現(xiàn)實的意義。</p><p>  本文介紹了溫差發(fā)電技術(shù)的原理,回顧了國內(nèi)外的研究進展及現(xiàn)狀,以常見的商用溫差電組件為例,對溫差發(fā)電中存在的發(fā)電效率低,溫差電組件使用壽命短,可靠性不高等問題進行了分析,并提出了應(yīng)對策略。隨著熱電材料性能的提高和溫差電組件可靠性的增加,溫

41、差發(fā)電應(yīng)用前景廣闊。</p><p><b>  1工作原理</b></p><p>  溫差發(fā)電是基于熱電材料的塞貝克效應(yīng)發(fā)展起來的一種發(fā)電技術(shù),將P型和N型兩種不同類型的熱電材料(P型是富空穴材料,N型是富電子材料)一端相連形成一個PN結(jié),置于高溫狀態(tài),另一端形成低溫,則由于熱激發(fā)作用,P <N)型材料高溫端空穴(電子)濃度高于低溫端,因此在這種濃度梯度的驅(qū)

42、動卜,空穴和電子就開始向低溫端擴散,從而形成電動勢,這樣熱電材料就通過高低溫端問的溫差完成了將高溫端輸入的熱能直接轉(zhuǎn)化成電能的過程。單獨的一個PN結(jié),可形成的電動勢很小,而如果將很多這樣的PN結(jié)串聯(lián)起來,就可以得到足夠高的電壓,成為一個溫差發(fā)電器廠2國內(nèi)外溫差發(fā)電技術(shù)的研究進展</p><p><b>  2.1國外研究進展</b></p><p>  自1821年S

43、eebeck發(fā)現(xiàn)塞貝克效應(yīng)以來,國外對溫差發(fā)電進行了大量的研究,1947年,第一臺溫差發(fā)電器問世,效率僅為1.5%。1953年,Loffe院士研究小組成功研制出利用煤油燈、拖拉機熱量作熱源的溫差發(fā)電裝置,在用電困難地區(qū)作小功率電源之用。20世紀60年代,一些具有較好熱電性能的材料,溫差發(fā)電的研究熱潮達到高峰,特別是前蘇聯(lián)和美國,由于國防、軍事等特殊行業(yè)的推動,溫差發(fā)電技術(shù)的應(yīng)用發(fā)展迅速。到20世紀60年代末,前蘇聯(lián)先后制造了1 000多

44、個放射性同位素溫差發(fā)電器(RTG),廣泛用于衛(wèi)星電源、燈塔和導(dǎo)航標識,其平均使用壽命超過10年。美國也不甘落后,其開發(fā)的RTG最長工作時問已超30年。1961年6月美國SNAP-3A能源系統(tǒng)投入使用,輸出功率為2.7 W,發(fā)電效率5.1%。 1977年發(fā)射的木星、土星探測器上使用的RTG}輸出功率已達到155 W。20世紀80年代初,美國又完成500-1 000 W軍用溫差發(fā)電機的研制,并于80年代末正式進入部隊裝備。隨著能源危機和環(huán)境

45、污染的加劇,人們開始關(guān)注溫差發(fā)電在廢余熱利用中的價值,很多國家已將發(fā)展溫差電技術(shù)列為中長期能源開發(fā)計劃。日</p><p><b>  2.2國內(nèi)研究進展</b></p><p>  國內(nèi)在溫差發(fā)電方面的研究起步相對較晚,主要集中在理論和熱電材料的制備等方面的研究。陳金燦課題組從20世紀80年代開始對溫差發(fā)電器的基礎(chǔ)理論進行研究,對溫差發(fā)電器的性能進行優(yōu)化分析,得到很

46、多有意義的成果[no。屈健等李玉東等提出從火用的角度對低溫差下發(fā)電器的工作性能進行分析。賈磊等提出低溫及大溫差工況下湯姆遜熱對輸出功率的影響不可忽略的觀點。賈陽</p><p>  等建立溫差發(fā)電器熱電禍合分析模型,以數(shù)值計算的方法分析了熱電材料物性參數(shù)及其變化對發(fā)電器工作特性的影響,得出結(jié)論,材料的導(dǎo)熱系數(shù)、電阻率及塞貝克系數(shù)對發(fā)電器轉(zhuǎn)換效率的影響均為非線性,其中導(dǎo)熱系數(shù)的影響最明顯。德鵬等分析了溫差發(fā)電器的熱

47、環(huán)境、回路中負載電阻等參數(shù)及溫差電單體對的連接方式對發(fā)電器工作性能的影響,得出提高溫差發(fā)電器熱端加熱熱流或增加冷端的換熱系數(shù)均能提高發(fā)電器的輸出功率及熱電轉(zhuǎn)換效率的結(jié)論。蘇景芳研究了系統(tǒng)</p><p>  與環(huán)境,系統(tǒng)與系統(tǒng)之問的熱流關(guān)系,對系統(tǒng)的性能特性作出優(yōu)化,建立溫差發(fā)電器優(yōu)化設(shè)計模型,同時以VB 6.0(Mi-crosoft Visual Basic 6.0)語言作為開發(fā)工具,ActiveX數(shù)據(jù)對象訪

48、問數(shù)據(jù)庫,編寫了溫差發(fā)電器設(shè)計軟件。錢衛(wèi)強通過對低品位熱源半導(dǎo)體小溫差發(fā)電器性能的研究,總結(jié)了電動勢、內(nèi)阻及輸功率等參數(shù)隨外電路、溫度、發(fā)電組件幾何尺寸等因素的變化規(guī)律,另外研究了串、并聯(lián)情況下溫差電組件的性能。李偉江從非平衡熱力學(xué)角度出發(fā),建立單層多電偶發(fā)電器在低溫差下穩(wěn)定工作的模型。研究溫差發(fā)電器在內(nèi)部結(jié)構(gòu)和外部換熱條件變化情況下的運行規(guī)律,與實驗相結(jié)合,得出最佳匹配系數(shù)下,輸出功率和發(fā)電效率均隨最大溫差近似呈線性變化,同時指出解決

49、發(fā)電效率低的問題根本上依靠的是材料性能的改善。剛現(xiàn)東理論分析和實驗研究相結(jié)合,通過模擬坦克排氣筒附近區(qū)域制冷狀況,由降溫情況評估紅外隱身效果,得出以坦克尾氣余熱為熱源將溫差電技術(shù)應(yīng)用于坦克紅外隱身完全可行的結(jié)論。</p><p><b>  3.1發(fā)電效率</b></p><p>  目前,溫差發(fā)電的效率一般為5%-7%,遠低于火力發(fā)電的40%。最主要的原因是熱電材料

50、性能不理想,另一方面是發(fā)電器的匹配問題廠。</p><p>  3.1.1熱電材料的限制</p><p>  熱電材料作為熱電器件的核心部分,性能的好壞直接決定器件效能的優(yōu)劣。優(yōu)值ZT是衡量熱電材料性能最重要的參數(shù)。ZT值越高,材料的熱電性能越好,能量轉(zhuǎn)換效率越高。Bi2T3;室溫下ZT值1左右,是使用最廣泛的熱電材料。但是以;Bi2T3材料制作的溫差發(fā)電器發(fā)電效率依然低于10%。如果能把

51、材料的ZT值提高到3左右,溫差發(fā)電將可以與傳統(tǒng)的發(fā)電方式相媲美。為此,人們積極尋找和開發(fā)具有較高優(yōu)值的新型熱電材料,目前的研究熱點有:鉆基氧化物熱電材料、準晶體材料、超晶格薄膜熱電材料、納米熱電材料等。Terasaki等首次發(fā)現(xiàn)NaCo2O4單晶在室溫卜具有較高的Seebeck系數(shù),較低的電阻率和較低的熱導(dǎo)率,為此引起人們的關(guān)注,但是NaCo2O4在空氣中易潮解且超過1 073 K時易揮發(fā),所以人們把目光轉(zhuǎn)向另一種鉆基氧化物Ca-Co-

52、O系。 Funahashi的研究預(yù)測:Ca2Co2O5在T≥873 K時,ZT=1.2一2.7。準晶體熱電材料1984年由Shechtman等首次發(fā)現(xiàn),近年來引起關(guān)注。這種材料熱力學(xué)穩(wěn)定性好,電阻率高,具有負的導(dǎo)熱系數(shù),故導(dǎo)電性能好,導(dǎo)熱性能低。有研究預(yù)言室溫下可得到ZT=1.</p><p>  氣相沉積(MOCVE)法將Bi-Te基合金制備成超晶格薄膜,300K時ZT值達到2.4。 Dresselhaus對B

53、i納米線及量子阱系統(tǒng)的大量研究后預(yù)言,通過超晶格量子限制效應(yīng)可以得到ZT值大于3的材料。納米熱電材料是熱電材料的另一研究熱點,浙江大學(xué)在此領(lǐng)域成果卓著。趙新兵等研究發(fā)現(xiàn)傳統(tǒng)Bi-Te基熱電材料中添加15%的含有Bi2T3;納米管粉末,可以使材料的熱電性能提高20%左右。Cao等采用水熱合成法熱壓后得到ZT=1.28的(Bi,Sb)2Te3;納米熱電材料。ZHAO等通過納米粉末摻雜,制得ZT值均超過1.5的Bi2Te3-Sb2Te3和Ge

54、Te-AgSbTe2納米結(jié)構(gòu)材料。</p><p><b>  3.1.2匹配問題</b></p><p>  溫差發(fā)電器的輸出功率和發(fā)電效率與高溫端溫度(Th)。低溫端溫度(Tc),溫差發(fā)電回路電流(I),負載電阻(R),發(fā)電器內(nèi)阻(r)等因素密切相關(guān)。在不同條件下,溫差發(fā)電器的性能差別較大。屈健等應(yīng)用有限時問熱力學(xué)理論對半導(dǎo)體溫差發(fā)電器的工作性能進行了分析,得到溫

55、差發(fā)電存在最佳參數(shù)工作區(qū)的結(jié)論。潘玉灼等采用非平衡態(tài)熱力學(xué)優(yōu)化控制理論分析溫差電模型,數(shù)值模擬結(jié)果表明:最匹配參數(shù)工作條件下輸出功率和發(fā)電效率可分別提高39%和20%發(fā)電器熱設(shè)計也是影響發(fā)電效率的重要因素。為了保持較高的溫差,往往在發(fā)電器低溫端增加散熱裝置,以使熱量及時散失。Chein研究指出當器件熱阻大于散熱器最大熱阻時,散熱器將小能夠散走器件產(chǎn)生的熱量,因此與溫差發(fā)電器匹配的冷端散熱方式也是影響發(fā)電器性能的重要因素。目前主要的散熱方

56、式有:風(fēng)冷、液冷和相變散熱。風(fēng)冷又分為自然風(fēng)冷和強制風(fēng)冷。自然風(fēng)冷換熱器是一定形狀的翅片散熱器。熱阻大小與翅片密度、散熱器面積直接相關(guān)。目前溫差發(fā)電器中應(yīng)用較多的是強制風(fēng)冷,散熱器(如熱沉)與風(fēng)扇結(jié)合,低溫端熱量傳導(dǎo)到更大面積的翅片上,借助強制散熱將熱量散失到空氣中。熱阻取決于風(fēng)速,風(fēng)速越大,熱阻越小</p><p><b>  3.2可靠性問題</b></p><p&g

57、t;  3.2.1和機械應(yīng)力的存在</p><p>  以常見的三明治式溫差電組件為例,要達到較高的發(fā)電效率,通常要求發(fā)電組件冷熱端之問形成較大溫差,這將造成冷端連接片收縮或熱端連接片膨脹,從而產(chǎn)生機械應(yīng)力。機械應(yīng)力的存在使得剛性的接頭或P,N電臂很容易斷裂,最終可能導(dǎo)致溫差電偶的損壞,從而縮短了溫差電組件的使用壽命。為了小增加電阻,要求過渡層厚度小超過0.3 mm;(3)改變基體材料。金屬化陶瓷片由于強度高、導(dǎo)

58、熱性好、價格低廉,因而成為目前使用最廣泛的基體材料。但是陶瓷片硬度大,極易造成P,N電臂折斷。如果采用有一定柔性而又能起支撐作用的新材料來代替陶瓷片,通過基體的柔性來緩解機械應(yīng)力,將能有效地解決電臂斷裂的問題。</p><p><b>  3.2.2環(huán)境因索</b></p><p>  濕氣。焊接處至少存在熱電材料、焊料和連接片材料三種物質(zhì)。濕氣進入,在冷接頭附近結(jié)露

59、,形成原電池,從而在接頭處產(chǎn)生電解腐蝕作用,導(dǎo)致焊接處電阻增大,最終焊接頭完全損壞。最好使溫差電組件工作在真空卜,或者填充隔熱材料加以保護;</p><p>  (2)高溫。高溫可以加速器件的損壞。原因為焊接處焊料氧化和升華;加速了銅等雜質(zhì)向熱電材料內(nèi)部擴散。有報道300 K時,雜質(zhì)的擴散速率為10-6 cm/s雜質(zhì)擴散引起材料塞貝克系數(shù)和電導(dǎo)率迅速減小。目前常用的解決辦法是在銅連接片和元件端面鍍鎳,但是鍍鎳工藝

60、尚不理想。</p><p><b>  4結(jié)論</b></p><p>  由于獨特的優(yōu)勢,溫差發(fā)電技術(shù)在航天、軍用領(lǐng)域展示了很好的應(yīng)用前景。同時,作為一種綠色環(huán)保的發(fā)電方式,近年來民用領(lǐng)域的應(yīng)用同樣發(fā)展迅速。盡管目前溫差發(fā)電的效率普遍低于10%,但隨著新型高性能熱電材料以及性能可靠的溫差發(fā)電器的研究與開發(fā),溫差發(fā)電技術(shù)將會更大地發(fā)揮其在低品位能源利用方面的優(yōu)勢。結(jié)合

61、目前國內(nèi)外溫差發(fā)電技術(shù)的研究進展可以從以下三個方面展開工作:(1)溫差發(fā)電效率低的問題首先應(yīng)該從熱電材料性能的提高上來突破。摻雜、準晶體結(jié)構(gòu)、低維化、超晶格結(jié)構(gòu)及納米技術(shù)均能有效地提高熱電優(yōu)值,因而成為熱電材料的發(fā)展方向;(2)通過ANSYS等數(shù)值仿真模擬和實驗研究相結(jié)合的辦法,對溫差發(fā)電器相關(guān)參數(shù)進行優(yōu)化。同時對高低溫端實施合理的熱管理,使溫差發(fā)電器工作在最匹配條件下,也是提高發(fā)電效率的重要途徑;(3)溫差發(fā)電應(yīng)用日益廣泛,作為系統(tǒng)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論