基于視覺感知的立體視頻客觀質(zhì)量評價研究.pdf_第1頁
已閱讀1頁,還剩80頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、立體視頻包含左右視點兩個視頻,觀看時能夠給觀看者帶來更為身臨其境的觀看體驗,因此也吸引了越來越多的學者的關注,并逐漸成為視頻通信領域的研究熱點。在立體視頻通信系統(tǒng)之中,立體視頻質(zhì)量評價技術則是其關鍵技術之一。因此,立體視頻質(zhì)量評價技術的研究對于立體視頻系統(tǒng)的發(fā)展有著積極的推動作用。本學位論文從圖像質(zhì)量評價方法出發(fā),通過研究人眼視覺特性以及立體視頻本身所存在的特點,建立了兩種立體視頻客觀質(zhì)量評價方法。其中,具體研究內(nèi)容如下:
  (

2、1)從立體視頻質(zhì)量的構成來看,圖像質(zhì)量是其重要組成部分之一。本文中,通過研究分形編碼(Fractal Coding)的過程,利用其中的圖像自相似性(S e l f-similarity)理論,提出一種基于自相似性的半?yún)⒖紙D像質(zhì)量評價方法。該方法利用分形編碼中拼貼誤差(Collage Error)這一變量作為判斷圖像失真程度的特征,通過度量參考圖像與失真圖像各塊之間拼貼誤差的改變程度并將其作為各塊的質(zhì)量,之后利用顯著性對各塊質(zhì)量進行加權,

3、從而得到整體圖像質(zhì)量。在德克薩斯大學奧斯汀分校建立的圖像測試庫(LIVE數(shù)據(jù)庫)上進行準確性試驗,主客觀圖像質(zhì)量之間的線性相關系數(shù)(Linear Correlation Coefficients,LCC)均達到0.92以上,Spearman秩相關系數(shù)(Spearman Rank Order Correlation Coefficients,SROCC)基本達到0.9以上,均方根誤差(Rooted mean square error,RM

4、SE)在6以下。實驗結果表明該半?yún)⒖紙D像質(zhì)量評價方法在節(jié)約帶寬(拼貼誤差數(shù)據(jù)量為參考圖像數(shù)據(jù)量的1/64或1/128)的同時,能較為準確地預測圖像客觀質(zhì)量。
  (2)針對目前對于視頻質(zhì)量評價方法中時域信息描述困難的問題,提出來一種基于三維小波變換(Three Dimensional-Discrete Wavelet Transform,3 D-DWT)的立體視頻質(zhì)量評價方法。首先利用雙樹復小波變換(Dual-Tree Compl

5、ex Wavelet Transform,DT-CWT)模擬人類視覺細胞,對立體視頻中左右視點進行融合,從而得到雙目融合視頻,然后利用三維小波變換對雙目融合視頻中的各幀組進行變換分解并計算各幀組質(zhì)量,最后根據(jù)各幀組亮度以及運動程度等特征對幀組質(zhì)量進行加權得到雙目融合視頻質(zhì)量,并將其作為立體視頻質(zhì)量。在 NAMA3D立體視頻數(shù)據(jù)庫上進行準確性試驗,主客觀立體視頻質(zhì)量之間的LCC超過0.92,SROCC超過0.91,RMSE保持在5左右。實

6、驗證明該方法與人眼視覺一致性較高,能客觀預測立體視頻質(zhì)量。
  (3)由于視頻圖像的清晰度不斷增加,視頻圖像通信系統(tǒng)中所需傳輸?shù)臄?shù)據(jù)量越來越大。同時,實際視頻通信系統(tǒng)中往往無法獲得任何參考視頻圖像的信息。針對于這樣的問題,利用自然圖像小波系數(shù)的分布形態(tài)所包含的特征,本文中提出了一種基于小波系數(shù)分布特征的無參考圖像質(zhì)量評價方法。由于自然圖像小波變換后得到小波系數(shù)呈近似?穩(wěn)定分布(?-stable Distribution),因此該方

7、法利用其概率密度函數(shù)(Probability Density Function,PDF)的參數(shù)作為分布特征。同時,通過子帶間分布特征的關系提取分布特征向量,并利用支持向量回歸(Support Vector Regression,SVR)的方式訓練得到預測模型,從而提出了無參考的圖像質(zhì)量評價方法。該方法預測得到的圖像客觀質(zhì)量與主觀質(zhì)量之間的LCC和SROCC均達到0.9以上,RMSE保持在6.5以下。準確性指標表明該方法在無需參考圖像的情

8、況下,能夠較為準確的預測圖像質(zhì)量,具有較高的應用價值。
  (4)由于視頻小波系數(shù)與圖像小波系數(shù)有相似的分布形態(tài),因此在之前無參考圖像質(zhì)量評價方法基礎上,考慮到立體視頻所具有的特點,本文提出了一種基于小波系數(shù)分布特征的無參考立體視頻質(zhì)量評價方法。該方法利用三維小波變換(Three Dimensional Discrete Wavelet Transform,3 D-DWT)得到視頻序列中較重要幀組的小波系數(shù),同時分別提取立體視頻序

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論