多智能體的戰(zhàn)術(shù)行為決策研究及應(yīng)用.pdf_第1頁
已閱讀1頁,還剩56頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、南京航空航天大學(xué)碩士學(xué)位論文多智能體的戰(zhàn)術(shù)行為決策研究及應(yīng)用姓名:宋琛申請學(xué)位級別:碩士專業(yè):計算機科學(xué)與技術(shù)指導(dǎo)教師:燕雪峰2011-03多智能體的戰(zhàn)術(shù)行為決策研究及應(yīng)用 II Abstract Tactical behavior is important to military confrontation, also a problem of agent collaboration. Multi-agent task’s core

2、is coordination and implementation. Complex task is difficult to implement for a single agent, requiring groups together to complete coordination and cooperation with each other. How to organize the body posed by a numbe

3、r of agents, and how groups such agents to achieve coordination and cooperation in the confrontation is an important theoretical and practical significance of the research topic. The work is from research cooperation of

4、China State Shipbuilding Corporation and Nanjing University of Aeronautics and Astronautics, which through the confrontation of agent to research the battlefield tactics of naval warfare. The study has found that the deg

5、ree of combat confrontation can influence the simulation results. The study research tactical coordination behavior through the agent’s acts, first study cooperative navigation algorithm of the formation, then study the

6、offense and defense decision-making when formation moving. Finally, we prove the feasibility and effectiveness of study by simulation experiments. The theory of potential field and particle swarm Optimization is used to

7、study formation problem and path planning problem. Through a new joint control algorithm we can get better formation control. Traditional PSO for Path planning can not adjust the number of nodes according to in different

8、 environments, so that the search efficiency is low, even in some terrain are not feasible solutions. This paper proposes a particle swarm optimization algorithms based on variable-dimensional for path planning. The algo

9、rithm dynamically changes the dimensions of particles by controling the number of nodes, to accelerate the convergence speed. In formation control, the design of formation evaluation function determines the state of form

10、ation, then using different control strategies. The algorithm enhances capabilities to dynamicly avoid the threat of obstacles by different control strategies. The the artificial potential’s deficiencies is that the meth

11、od is easy to fall into local extreme, so the paper propose a virtual potential point algorithm to avoid obstacle and restructure the formation. Simulation results show the effectiveness of the algorithm. In order to imp

12、rove the effectiveness of cooperative attack and defense, the paper researches immune algorithm in the target allocation problem. The current target allocation algorithm is more for once fire coverage, so the combat troo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論