版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、上海大學(xué)碩士學(xué)位論文典則TSVD方法及其相關(guān)問題姓名:張寧申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):計(jì)算數(shù)學(xué)指導(dǎo)教師:賀國(guó)強(qiáng)20030401上海大學(xué)碩士研究生學(xué)位論文IIAbstractThisthesisconsidersanewTSVDformmethod—CanonicalTSVDMethodforsolvinglineari1】一posedinverseproblemsResultsrelatedtoitstheoreticalanalysisa
2、ndnumericalexamplesareobtainedChapteronebrieflyintroducesseveralregularizationmethodsandparameterchoicemethodsdiscussedinthisthesisaftergivingtheconceptionsofIll—posedInverseProblemandRegularizaionThemainworkofthisthesis
3、isdescribedindetailinchaptertwochapterthreeandchapterfourChaptertwodiscussescanonicalTSVDmethodinfinitedimemsionalspaceswhenonlytheright—handsideisnoisyTheorem221provesthismethodcanleadtooptimalconvergenceratewithoutanya
4、ssumptionMoreover,section23givesseveralnumericalexampleswithbeautifulresultsbyusingthismethod,whichdemonstratethattheabovetheoreticalconclusionsholdinpracticalcomputationalsettingsChapterthreeconcernsthecaseofbothperturb
5、edoperatorsandnoisydataOuranalysisbeginswith肛orderA—smoothregularizationbecauseitwillbecomecanonicalTSVDmethodwhenptendstoinfinityThecovergenceandconvergencerateofAsmoothregularizationareprovedindetail,whenusingbothsemia
6、posterioriMorozovDiscrepancyandfullyaposterioriMorozovDiscrepancytoselectreganlarizationparametersAfterthat,itisfoundthat,when“tendstoinfinity,theconclusionsderivedfromporderAsmoothregularizationcannotdirectlyleadtesults
7、ofcanonicalTSVDmethodTherefore,anewmethodwillbeinneedtodiscusscanonicalTSVDmethodwhenboththeoperatorsareperturbedandthedataarenoisyHowever,fortheabovecase,severalnumericalexamplesarealsogiven,andtiieirsatisfactoryresults
8、areobtainedbymeansofcanonicalTSVDmethod,whichdemonstratethatthismethodisalsoeffectiveforsolvingill—posedequationswithbothperturberbedoperatorsandnoisydataChapterfourmakessystematicintroduction,analysisanddiscussionofapre
9、sentlypopu—larerror—freeformparameterchoicemethod—L—curveCriterionanddetailedlydiscussesitforcanonicalTSVDmethodAftercolligation,understandingandanalysisofmanygoodandbadevaluationsofit,thiscriterionisappliedtofourdiffere
10、ntregularizationmethods,ie,Tikhonovregularization,implicititerativemethod,truncatedSVDandcanonicalTSVDmethodespeciallythelastoneWithsomenumericalexamples,fournumericalmthodstofindthecorneronL—curvearediscussedandcompared
11、withMorozovDiscrepancyOurconclusionisthat,ingeneral,thenumericalresultsobtainedbymeansofL—curveCriterionarenotsogoodasthoseobtainedbyMorozovDiscrepancy,andforsomediscreteregularizationmethods,thisparameterchoicemethodsti
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 典則TSVD方法的有效數(shù)值實(shí)現(xiàn)及其相關(guān)問題.pdf
- TSVD方法在數(shù)值微分及圖像恢復(fù)問題中的應(yīng)用.pdf
- Kahler幾何中的典則度量.pdf
- 4512.自反層上的典則度量及相關(guān)熱流的研究
- 徐日久《五邊典則》初探.pdf
- 從“典”到“典權(quán)”——習(xí)慣、立法、實(shí)踐及其體現(xiàn)的若干問題.pdf
- 典權(quán)問題芻議.pdf
- K_hler幾何與Sasakian幾何中的典則度量.pdf
- CS與TSVD相結(jié)合的超寬帶雷達(dá)逆成像方法研究.pdf
- 能源及其相關(guān)問題
- 《書品》校勘及其相關(guān)問題.pdf
- “各”及其相關(guān)問題研究.pdf
- 鞅變換及其相關(guān)問題.pdf
- 電解規(guī)律及其典例分析
- 極大相關(guān)問題的數(shù)值方法.pdf
- 唐代孝道及其相關(guān)問題研究.pdf
- 圖中的圈及其相關(guān)問題.pdf
- “X死”及其相關(guān)問題考察.pdf
- 《湘報(bào)》及其相關(guān)問題研究.pdf
- “V出”及其相關(guān)問題考察.pdf
評(píng)論
0/150
提交評(píng)論