版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、分類號(hào)UDC密級(jí)學(xué)位論文具有非線性邊界條件的橢圓方程的正解作者姓名:趙永志指導(dǎo)教師:張國(guó)偉教授東北大學(xué)理學(xué)院申請(qǐng)學(xué)位級(jí)別:碩士學(xué)科類別:理學(xué)學(xué)科專業(yè)名稱:論文提交日期:學(xué)位授予日期:評(píng)閱人:基礎(chǔ)數(shù)學(xué)2011年6月2011年7月喙和尼論文答辯日期:答辯委員會(huì)主席:聰磅東北大學(xué)2011年6月2011年6月亥歷眵l獨(dú)創(chuàng)性聲明本人聲明,所呈交的學(xué)位論文是在導(dǎo)師的指導(dǎo)下完成的。論文中取得的研究成果除加以標(biāo)注和致謝的地方外,不包含其他人已經(jīng)發(fā)表或撰
2、寫(xiě)過(guò)的研究成果,也不包括本人為獲得其他學(xué)位而使用過(guò)的材料。與我一同工作的同志對(duì)本研究所做的任何貢獻(xiàn)均已在論文中作了明確的說(shuō)明并表示謝意。學(xué)位論文作者簽名:趙杼,三、卉^一日期:圳‘刁學(xué)位論文版權(quán)使用授權(quán)書(shū)本學(xué)位論文作者和指導(dǎo)教師完全了解東北大學(xué)有關(guān)保留、使用學(xué)位論文的規(guī)定:即學(xué)校有權(quán)保留并向國(guó)家有關(guān)部門(mén)或機(jī)構(gòu)送交論文的復(fù)印件和磁盤(pán),允許論文被查閱和借閱。本人同意東北大學(xué)可以將學(xué)位論文的全部或部分內(nèi)容編入有關(guān)數(shù)據(jù)庫(kù)進(jìn)行檢索、交流。作者和導(dǎo)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 一類具有負(fù)指數(shù)非線性邊界條件的橢圓方程的研究.pdf
- 具有非線性邊界條件的橢圓方程解的存在性和多重性.pdf
- 奇異非線性橢圓方程邊界值問(wèn)題的正解.pdf
- 帶積分邊界條件的非線性分?jǐn)?shù)階微分方程的正解.pdf
- 一類具有非線性邊界條件的熱方程的數(shù)值計(jì)算.pdf
- 具有非線性邊界條件的p-Laplace方程無(wú)窮多解的存在性.pdf
- 奇異橢圓方程不同邊界條件下正解的存在性.pdf
- 帶有積分邊界條件的非線性分?jǐn)?shù)階微分方程邊值問(wèn)題的正解
- 帶有積分邊界條件的非線性分?jǐn)?shù)階微分方程邊值問(wèn)題的正解.pdf
- 非線性人工邊界條件.pdf
- 非線性橢圓方程的正解的漸近行為.pdf
- 幾類帶有積分邊界條件的非線性微分方程組正解的存在性.pdf
- 具有臨界增長(zhǎng)的非線性橢圓方程在Neumann邊值條件下的正解問(wèn)題.pdf
- 一類帶積分邊界條件非線性常微分方程正解存在性的研究
- 一類帶積分邊界條件非線性常微分方程正解存在性的研究.pdf
- 非線性邊界條件下具非線性耗散粘彈性梁方程的整體解.pdf
- 一種求解具有非線性邊界條件的橢圓型偏微分方程組多解問(wèn)題的數(shù)值方法.pdf
- 帶有非線性邊界條件的反應(yīng)擴(kuò)散方程解的長(zhǎng)時(shí)間行為.pdf
- 一種求解帶非線性邊界條件的橢圓偏微分方程多解的數(shù)值方法.pdf
- 非線性橢圓方程基態(tài)解及正解的存在性.pdf
評(píng)論
0/150
提交評(píng)論