[雙語翻譯]--(節(jié)選)外文翻譯--外文翻譯--一種新的自動調(diào)制識別的方法(英文)_第1頁
已閱讀1頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、AppliedSoftComputing12(2012)453–461ContentslistsavailableatSciVerseScienceDirectAppliedSoftComputingjournalhomepage:www.elsevier.com/locate/asocAnovelmethodforautomaticmodulationrecognitionAtaollahEbrahimzadeShermeFacult

2、yofElectricalandComputerEngineering,BabolUniversityofTechnology,Babol,Irana r t i c l e i nf oArticlehistory:Received15September2009Receivedinrevisedform23December2010Accepted14August2011Availableonline30August2

3、011Keywords:ModulationrecognitionPatternrecognitionBeesAlgorithmHierarchicalsupportvectormachinebasedclassifierCombinationofthehigherordermoments(uptoeighth)andhigherordercumulants(uptoeighth)Spectralcharacteristicsab s

4、 t r a c tAutomaticrecognitionof the digitalmodulationplaysan importantrole in variousapplications.Thispaperinvestigatesthe designofan accuratesystemfor recognitionof digitalmodulations.First,itisintroducedan

5、 efficientpattern recognitionsystemthat includestwo mainmodules:the featureextractionmoduleand the classifiermodule.Feature extractionmoduleextractsa suitablecombinationof the higherordermomentsup to eighth,

6、higherorder cumulantsup to eighthand instantaneouscharacteristicsofdigitalmodulations.These combinationsofthe featuresare appliedfor the firsttimein this area.Intheclassifiermodule,two importantclassesof supe

7、rvisedclassifiers,i.e., multi-layerperceptron(MLP)neuralnetworkand hierarchicalmulti-classsupportvector machinebased classifierare investigated.Byexperimentalstudy, we choosethe best classifierfor recognitionof

8、 the consideredmodulations.Then,weproposea hybridheuristicrecognitionsystemthat an optimizationmodule is addedtoimprovethegeneralizationperformanceof the classifier.In thismodulewe have useda new optimizationa

9、lgorithmcalledBees Algorithm.This moduleoptimizesthe classifierdesignby searchingfor the best value of theparametersthat tuneits discriminantfunction,and upstreamby lookingfor the best subsetof featurest

10、hatfeed the classifier.Simulationresults show that the proposedhybridintelligenttechniquehasveryhighrecognitionaccuracyevenat low levels of SNR with a littlenumberof the features.©2011ElsevierB.V. All

11、 rightsreserved.1.IntroductionAutomaticmodulationrecognitionisatechniquethatrecog-nizesthetypeofthereceivedsignalatthereceiver.Itplaysanimportantroleinmilitaryandcivildomains.Forexample,inmil-itaryapplications,itcanbeemp

12、loyedforelectronicsurveillance,interferencerecognitionandmonitoring.Thewiderangeofcivil-ianapplicationsincludesspectrummanagement,networktrafficadministration,signalconfirmation,softwareradios,intelligentmodems,cognitive

13、radio,etc.Duetotheincreasingusageofdigi-talsignalsinnoveltechnologiessuchassoftwareradio,therecentresearcheshavebeenfocusedonidentifyingthesesignaltypes.Generally,digitalsignaltypeidentificationmethodsfallintotwomaincate

14、gories:decisiontheoretic(DT)methodsandpat-ternrecognition(PR)methods.DTmethodsuseprobabilisticandhypothesistestingargumentstoformulatetherecognitionprob-lem[1–3].ThemajordrawbacksofDTmethodsaretheirtoohighcomputationalco

15、mplexity,lackofrobustnesstothemodelmis-matchaswellascarefulanalysisthatarerequiredtosetthecorrectthresholdvalues[4]. PRmethods,however,donotneedsuchcarefultreatment.Theyareeasytoimplement.PRmethodscanbefurtherdividedint

16、womainsubsystems:thefeatureextractionsubsystemE-mailaddress:abrahamzadeh@gmail.comandtheclassifiersubsystem.Theformerextractsthefeatures(e.g.histograms,spectralcharacteristics,instantaneouscharacteristics,combinationofse

17、condandfourthordermoment,symmetry,etc.),andthelatterdeterminesthemembershipofsignal(e.g.neuralnetworks,K-nearestneighbor,fuzzylogicclassifier,etc.)[4–19].Fromthepublishedworks,itappearsclearthatinthedesignofasystemforaut

18、omaticrecognitionofdigitalsignaltype(modula-tion),therearesomeimportantissues,which,ifsuitablyaddressed,leadtothedevelopmentofmorerobustandefficientrecognizers.Oneoftheseissuesisrelatedtothechoiceoftheclassificationappro

19、achtobeadopted.Literaturereviewshowsthatdespiteitsgreatpotential,theapplicationofdifferentsupervisedclassifierhasnotreceivedtheattentionitdeservesinthemodulationclassifi-cation.Therefore,inthispaperweinvestigatedtheperfo

20、rmancesofmulti-layerperceptronneuralnetwork(MLP)[20],andsupportvectormachine(SVM)[21,22]. Inthispaper,we haveusedtheSVMsinthestructureoftheproposedhierarchicalclassifier.Choosingtherightfeaturesetisstillanotherissue.Int

21、hispaper,asuitablesetoftheinstantaneouscharacteristics,thehigherordermomentsuptoeighthandthehigherordercumulantsuptoeightharepro-posedastheeffectivefeatures.Turningbacktothedigitalsignalrecognitionsystems,itisfoundthat:(

22、1)featureselectionisnotperformedinacompletelyautomaticwayand(2)theselectionofthebestfreeparametersoftheadoptedclassifieraregenerallydoneempirically(modelselectionissue).Anotherissuethatisaddressedinthispaperisoptimizatio

23、n.Inthismodulewehaveusedanew1568-4946/$–seefrontmatter©2011ElsevierB.V.Allrightsreserved.doi:10.1016/j.asoc.2011.08.025A.E.Sherme/AppliedSoftComputing12(2012)453–461455wheremisthemeanoftherandomvariable.Thedefinitio

24、nfortheithmomentforafinitelengthdiscretesignalisgivenby:?i =N ?k=1(sk ?m)if(sk)(7)whereNisthedatalength.Inthisstudysignalsareassumedtobezeromean.Thus:?i =N ?k=1si kf(sk)(8)Next,theauto-momentoftherandomvariablemaybedefin

25、edasfollows:Mpq =E[sp?q(s?)q](9)wherepiscalledthemomentorderands* standsforcomplexconjugationofs.Assumeazero-meandiscretebased-bandsignalsequenceoftheformsk =ak +jbk.Usingthedefinitionoftheauto-moments,theexpressionsford

26、ifferentordersmaybeeasilyderived.Forexample:M83 =E[s5(s?)3]=E[(a+jb)5(a?jb)3]?M83 =E[(a5 +j5a4b+j210a3b2 +j310a2b3 +j45ab4 +j5b5)(a3 ?j3a2b+j23ab2 ?j3b3)]?M83 =E[a8 +j2a7b?j22a6b2 ?j36a5b3 +j560a3b5 +j62a2b6 ?j72ab7 ?j8b

27、8]?M83 =E[a8 +2a6b2 ?2a2b6 ?b8](10)Considerascalarzeromeanrandomvariableswithcharacter-isticfunction:? f(t)=E{ejts} (11)ExpandingthelogarithmofthecharacteristicfunctionasaTaylorseries,oneobtains:log ? f (t)=k1(jt)+·

28、··+ kr(jt)rr! +···(12)Theconstantskr in(12)arecalledthecumulants(ofthedistri-bution)ofs.Thesymbolismforpthorderofcumulantissimilartothatofthepthordermoment.Morespecially:Cpq =Cum[s,...,s ? ?? ?

29、(p?q)terms,s?,...,s? ? ?? ?(q)terms](13)Forexample:C81 =Cum(s,s,s,s,s,s,s,s?)(14)Thenthordercumulantisafunctionofthemomentsofordersupto(andincluding)n.Momentsmaybeexpressedintermsofcumulantsas:M[s1,..,sn]= ??vCum[{sj}j

30、∈ v1]...Cum[{sj}j ∈vq](15)wherethesummationindexisoverallpartitionsv=(v1,...,vq)forthesetofindexes(1,2,...,n),andqisthenumberofelementsinagivenpartition.Cumulantsmaybealsobederivedintermsofmoments:Cum[s1,...,sn]= ??v(?1

31、)q?1(q?1)!E???j∈v1sj?? ...E???j ∈vqsj??(16)wherethesummationisbeingperformedonallpartitionsv=(v1,...,vq)forthesetofindices(1,2,...,n).Wehavecomputedallofthehigherorderfeaturesforthedigitalcommunicationsignalsthatarecons

32、idered.Table1showsthesomeofthetheoreticalvaluesofthehigherorderstatisticsforanumberoftheconsidereddigitalsignaltypes.ThesevaluesarecomputedTable1Someofthehigherorderfeaturesforanumberoftheconsidereddigitalsignaltypes.PSK

33、2QAM16QAM64M41 100M61 1 ?1.32?1.3M84 13.133.9C61 162.081.797C80 ?244?13.99?11.5C84 ?24417.380undertheconstraintofunitvarianceinnoisefreeandnormalizedbytheoreticalsignalpower,i.e.,thesevaluesareobtainedassumingthesignalis

34、cleanandofinfinitelength.However,inpracticesig-nalsareusuallysubjecttosometypeofdistortion,eitherinsidethetransmitterorduringtransmission,andareoffinitelength.Fig.1showsoneofthehigherorderfeaturesforanumberoftheconsidere

35、ddigitalsignaltypes.3.ClassifierInthispaper,twoimportantsupervisedclassifiershaveused.Followingphrasesdescribesbrieflytheseclassifiers.3.1.MLPneuralnetworkAnMLPneuralnetworkconsistsofaninputlayer(ofsourcenodes),oneormore

36、hiddenlayers(ofcomputationnodes)andanoutputlayer[21].TheissueoflearningalgorithmanditsspeedisveryimportantforMLP.Oneofthemostpopularlearningalgo-rithmsisbackpropagation(BP)algorithm.Howeverundercertainconditions,theBPnet

37、workclassifiercanproducenon-robustclas-sificationresultsandeasilyconvergetoalocalminimum.Moreoveritistimeconsumingintrainingphase.Inrecentyears,newlearningalgorithmshavebeenproposedforneuralnetworktraining.Inthispaper,th

38、eresilientback-propagation(RPROP)algorithmisusedasthelearningalgorithmoftheMLPneuralnetwork[26].RPROPconsidersthesignofderivativesastheindicationforthedirectionoftheweightupdate.Indoingso,thesizeofthepar-tialderivativedo

39、esnotinfluencetheweightstep.Thefollowingequationshowstheadaptationoftheupdatevaluesof?ij (weightchanges)fortheRPROPalgorithm.Forinitialization,all?ij aresettosmallpositivevalues:?ij(t) =? ? ? ?? ? ??+ ??ij(t?1);if ?E?wij

40、 (t?1) ?E?wij (t)?0?? ??ij(t?1);if ?E?wij (t?1) ?E?wij (t)?0?0 ??ij(t?1);otherwise(17)where?0 =1,0??? ?1??+,??,0,+ areknownastheupdatefac-tors,wij representstheweightvaluefromneuronjtoneuroni,andErepresentstheerrorfuncti

41、on.Wheneverthederivativeofthecorrespondingweightchangesitssign,itimpliesthatthepreviousupdatevalueistoolargeandithasskippedaminimum.Therefore,theupdatevalueisthenreduced(??)asshownabove.However,ifthederivativeretainsitss

42、ign,theupdatevalueis(?+)increased.Thiswillhelptoaccelerateconvergenceinshallowareas.Toavoidover-acceleration,intheepochfollowingtheapplicationof?+,thenewupdatevalueisneitherincreasednordecreased(?0)fromthepreviousone.Not

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論