版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、外文文獻(xiàn)原文外文文獻(xiàn)原文DataMining2UsagescenariosDataminingiswidelyusedinarangeofscientificdisciplinesbusinessscenarios.SomenotewthyexamplesincludefindingsintheareasofdatabasemanagementmachinelearningBayesianinferenceknowledgegainfe
2、xpertsystemsfuzzylogicneuralwksgeicalgithms.Examplesineverydaybusinessscenariosincludedatabasemarketingfairlinespaneldataresearchaswellasthecreationofcustomizedtradepublicationsbasedonsubscriberdatafhundredsofdifferentus
3、ergroups.FrawleyPiatetskyShapiro(Frawleyetal.99)offeradetailedoverviewoffurtherareasofusage.Grossmarginanalysisisanotherinterestingfieldofresearchindatamining.Withthehelpofmoderncostaccountingsoftwarecompaniescanperfmmul
4、tidimensionalanalysisonindividualincomeitems.Fig.2listsafewsamplequestionsrelatedtothistopic.Duetothenumerousreferenceobjects(e.g.productscustomerssaleschannelsregions)theresultingnumberofobjectsthatneedtobeexaminedcontr
5、ollersrequiremethodsthatautomaticallyidentifydatapatterns.Inthiscasethesepatternsareacombinationofattributevalues(e.g.“DIYstes”“powerdrills”inFig.1)aswellasmeasures(e.g.grossmargin).Acompanythatdevelopsadataminingprogram
6、mustalsoconsiderthelargevolumesofdatainvolved.Eveninasizecompanyfexampleitiscommonthatseveralhundredthousitemsflowintoamonthlyincomestatement.CaseBasedReasoning(CBR)isoneinterestingexampleofhowdataminingmachinelearningco
7、uldwktogether.CBRcomponentsattempttotracecurrentquestionstoproblemsthathavealreadybeensolvedinthepast.Helpdeskswhichassistinclarifyingthequestionsacustomerhasaboutpurchasedproductsareonepracticalusageofthistypeofprocedur
8、e.Whilesomecompaniesusehelpdeskstosuppttheirtelephonehotlinesothersgivetheircustomersdirectaccessthrougharemotedatatransfer.Dataminingcanbeveryvaluableinthiscontextbecauseitconsolidatestheinfmationgatheredinthoussofindiv
9、idualhisticalcasesintokeyfindings.Theadvantageofthisprocedureistheshterprocessofsearchingfprecedentswhichcanbeusedtoanswerthecurrentcustomer’squestion.3MethodsTherearemanydifferenttypesofmethodstoanalyzeclassifydata.Some
10、commonmethodsincludeclusteranalysisBayesianinferenceaswellasinductivelearning.Clusteranalysissignificanttakeacompletelydifferentapproach.Initiallyeachobjectislocatedinitsowncluster.Theobjectshoweverarethencombinedsuccess
11、ivelysothatonlythesmallestlevelofhomogeneityislostineachstep.Wecaneasilypresenttheresultinghierarchyofnestedclustersinasocalleddendrogram.3.1.2ConceptualclusteringAsdescribedabovetraditionalfmsofclusteranalysiscanidentif
12、ygroupsofsimilarobjectsbutcannotdescribetheseclassesbeyondasimplelistoftheindividualobjects.Theobjectiveofmanyusagescenarioshoweveristoacterizetheexistingstructuresthatareburiedamongthevolumesofdata.Insteadofrepresenting
13、objectclassesthroughsimplylistingtheirobjectsconceptualclustersintentionallydescribethemusingtermswhichclassifytheindividualobjectsthroughrules.Agroupoftheserulesfmsasocalledconcept.Abasicexampleofaconceptisaprogramthata
14、utomaticallylogicallylinksindividualattributevalues.Advancedsystemscanevenestablishconceptsconcepthierarchieswithclassificationrules.Thedifferentconceptsinpartitionalmethodsofconceptualclusteringcompetewitheachother.Ulti
15、matelywehavetochoosetheclusteringconceptthatbestmeetstheperfmancecriteriafaspecificmethod.Someperfmancecriteriaincludethesimplicityoftheconcept(basedonthenumberofattributesinvolved)thediscriminatypower(asthenumberofvaria
16、blesthathavevaluesdonotoverlapbeyondthedifferentobjectclasses.)Similartotraditionalclusteranalysistherearealsohierarchicaltechniquesthatfmclassificationtreesinatopdownapproach.Asdescribedabovethebestclassificationinterms
17、ofperfmancecriteriawilltakeplaceoneachlevelofthetree.Theprocessendswhennofurtherimprovementispossiblefromonetree4CriticalfactsThefollowingsectionoutlinessomeproblemsassociatedwithdatamining.Inouropinionthesecriticalfacts
18、fsuccesswillfmthefoundationffutureresearchdevelopment.4.1EfficiencyofalgithmsRegardingtheefficiencyofdataminingalgithmsweshouldconsiderthefollowingaspects.Calculationtimesareakeyfact.Ifthecalculationtimesofalgithmsgrowfa
19、sterthanthelineardependencyofthesquarednumberofdatarecdstobesearchedwecouldassumethattheywouldnotbesuitableflargerapplications.Wecanimprovecalculationtimesbylimitingthesearchareathroughuserinputreducingthesearcheddatavol
20、umethroughtargeted(e.g.userbased)ioncompression.Recentdevelopmentsshowthatthecalculationtimeofalgithmswillbecomelessrelevantduetotechnicaldevelopments(e.g.fasterprocesssparallelcomputers).Thealgithmsmustberobustenoughtod
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 淺談數(shù)據(jù)挖掘畢業(yè)論文
- 數(shù)據(jù)庫(kù)技術(shù)簡(jiǎn)介畢業(yè)論文外文翻譯
- 外文翻譯-----數(shù)據(jù)挖掘什么是數(shù)據(jù)挖掘?
- 英語(yǔ)畢業(yè)論文外文翻譯
- 車床畢業(yè)論文外文翻譯
- 畢業(yè)論文設(shè)計(jì)外文翻譯
- 畢業(yè)論文外文資料翻譯
- 畢業(yè)論文外文翻譯.doc
- ,畢業(yè)論文外文翻譯.pdf
- 畢業(yè)論文外文翻譯-車床
- 數(shù)據(jù)通信畢業(yè)論文外文文獻(xiàn)翻譯
- 畢業(yè)論文外文翻譯---實(shí)驗(yàn)誤差與數(shù)據(jù)分析
- 恒流源-畢業(yè)論文外文翻譯
- 換熱器-畢業(yè)論文外文翻譯
- 畢業(yè)論文外文翻譯模板
- 大數(shù)據(jù)挖掘外文翻譯—大數(shù)據(jù)挖掘研究
- 理科畢業(yè)論文外文翻譯
- frankcunninghamtheoriesofdemocracy畢業(yè)論文外文翻譯
- asp畢業(yè)論文外文翻譯
- 畢業(yè)論文--數(shù)據(jù)挖掘k均值算法實(shí)現(xiàn)
評(píng)論
0/150
提交評(píng)論