2010-2016精選論文2014-d14-1162_第1頁(yè)
已閱讀1頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、Proceedingsofthe2014ConferenceonEmpiricalMethodsinNaturalLanguageProcessing(EMNLP)pages1532–1543October25292014DohaQatar.c?2014AssociationfComputationalLinguisticsGloVe:GlobalVectsfWdRepresentationJeffreyPenningtonRidSoc

2、herChristopherD.ManningComputerScienceDepartmentStanfdUniversityStanfdCA94305bstractRecentmethodsflearningvectspacerepresentationsofwdshavesucceededincapturingfinegrainedsemanticsyntacticregularitiesusingvectarithmeticbu

3、ttheiginoftheseregularitieshasremainedopaque.Weanalyzemakeexplicitthemodelpropertiesneededfsuchregularitiestoemergeinwdvects.Theresultisanewgloballogbilinearregressionmodelthatcombinestheadvantagesofthetwomajmodelfamilie

4、sintheliterature:globalmatrixfactizationlocalcontextwindowmethods.Ourmodelefficientlyleveragesstatisticalinfmationbytrainingonlyonthenonzeroelementsinawdwdcooccurrencematrixratherthanontheentiresparsematrixonindividualco

5、ntextwindowsinalargecpus.Themodelproducesavectspacewithmeaningfulsubstructureasevidencedbyitsperfmanceof75%onarecentwdanalogytask.Italsooutperfmsrelatedmodelsonsimilaritytasksnamedentityrecognition.1IntroductionSemanticv

6、ectspacemodelsoflanguagerepresenteachwdwitharealvaluedvect.Thesevectscanbeusedasfeaturesinavarietyofapplicationssuchasinfmationretrieval(Manningetal.2008)documentclassification(Sebastiani2002)questionanswering(Tellexetal

7、.2003)namedentityrecognition(Turianetal.2010)parsing(Socheretal.2013).Mostwdvectmethodsrelyonthedistanceanglebetweenpairsofwdvectsastheprimarymethodfevaluatingtheintrinsicqualityofsuchasetofwdrepresentations.RecentlyMiko

8、lovetal.(2013c)introducedanewevaluationschemebasedonwdanalogiesthatprobesthefinerstructureofthewdvectspacebyexaminingnotthescalardistancebetweenwdvectsbutrathertheirvariousdimensionsofdifference.Fexampletheanalogy“kingis

9、toqueenasmanistowoman”shouldbeencodedinthevectspacebythevectequationking?queen=man?woman.Thisevaluationschemefavsmodelsthatproducedimensionsofmeaningtherebycapturingthemulticlusteringideaofdistributedrepresentations(Beng

10、io2009).Thetwomainmodelfamiliesflearningwdvectsare:1)globalmatrixfactizationmethodssuchaslatentsemanticanalysis(LSA)(Deerwesteretal.1990)2)localcontextwindowmethodssuchastheskipgrammodelofMikolovetal.(2013c).Currentlybot

11、hfamiliessuffersignificantdrawbacks.WhilemethodslikeLSAefficientlyleveragestatisticalinfmationtheydorelativelypolyonthewdanalogytaskindicatingasuboptimalvectspacestructure.Methodslikeskipgrammaydobetterontheanalogytaskbu

12、ttheypolyutilizethestatisticsofthecpussincetheytrainonseparatelocalcontextwindowsinsteadofonglobalcooccurrencecounts.Inthiswkweanalyzethemodelpropertiesnecessarytoproducelineardirectionsofmeaningarguethatgloballogbilinea

13、rregressionmodelsareappropriatefdoingso.Weproposeaspecificweightedleastsquaresmodelthattrainsonglobalwdwdcooccurrencecountsthusmakesefficientuseofstatistics.Themodelproducesawdvectspacewithmeaningfulsubstructureasevidenc

14、edbyitsstateoftheartperfmanceof75%accuracyonthewdanalogydataset.Wealsodemonstratethatourmethodsoutperfmothercurrentmethodsonseveralwdsimilaritytasksalsoonacommonnamedentityrecognition(NER)benchmark.Weprovidethesourcecode

15、fthemodelaswellastrainedwdvectsat:nlp.stanfd.eduprojectsglove.1532Table1:Cooccurrenceprobabilitiesftargetwdsicesteamwithedcontextwdsfroma6billiontokencpus.Onlyintheratiodoesnoisefromnondiscriminativewdslikewaterfashionca

16、nceloutsothatlargevalues(muchgreaterthan1)crelatewellwithpropertiesspecifictoicesmallvalues(muchlessthan1)crelatewellwithpropertiesspecificofsteam.ProbabilityRatiok=solidk=gask=waterk=fashionP(k|ice)1.910?46.610?53.010?3

17、1.710?5P(k|steam)2.210?57.810?42.210?31.810?5P(k|ice)P(k|steam)8.98.510?21.360.96contextofwdi.Webeginwithasimpleexamplethatshowcaseshowcertainaspectsofmeaningcanbeextracteddirectlyfromcooccurrenceprobabilities.Considertw

18、owdsijthatexhibitaparticularaspectofinterestfconcretenesssupposeweareinterestedintheconceptofthermodynamicphasefwhichwemighttakei=icej=steam.Therelationshipofthesewdscanbeexaminedbystudyingtheratiooftheircooccurrenceprob

19、abilitieswithvariousprobewdsk.Fwdskrelatedtoicebutnotsteamsayk=solidweexpecttheratioPikPjkwillbelarge.Similarlyfwdskrelatedtosteambutnoticesayk=gastheratioshouldbesmall.Fwdsklikewaterfashionthatareeitherrelatedtobothices

20、teamtoneithertheratioshouldbeclosetoone.Table1showstheseprobabilitiestheirratiosfalargecpusthenumbersconfirmtheseexpectations.Comparedtotherawprobabilitiestheratioisbetterabletodistinguishrelevantwds(solidgas)fromirrelev

21、antwds(waterfashion)itisalsobetterabletodiscriminatebetweenthetworelevantwds.Theaboveargumentsuggeststhattheappropriatestartingpointfwdvectlearningshouldbewithratiosofcooccurrenceprobabilitiesratherthantheprobabilitiesth

22、emselves.NotingthattheratioPikPjkdependsonthreewdsijkthemostgeneralmodeltakesthefmF(wiwj?wk)=PikPjk(1)wherew∈Rdarewdvects?w∈RdareseparatecontextwdvectswhoserolewillbediscussedinSection4.2.Inthisequationtherighthsideisext

23、ractedfromthecpusFmaydependonsomeasofyetunspecifiedparameters.ThenumberofpossibilitiesfFisvastbutbyenfcingafewdesideratawecanauniquechoice.FirstwewouldlikeFtoencodetheinfmationpresenttheratioPikPjkinthewdvectspace.Sincev

24、ectspacesareinherentlylinearstructuresthemostnaturalwaytodothisiswithvectdifferences.WiththisaimwecanrestrictourconsiderationtothosefunctionsFthatdependonlyonthedifferenceofthetwotargetwdsmodifyingEqn.(1)toF(wi?wj?wk)=Pi

25、kPjk.(2)NextwenotethattheargumentsofFinEqn.(2)arevectswhiletherighthsideisascalar.WhileFcouldbetakentobeacomplicatedfunctionparameterizedbye.g.aneuralwkdoingsowouldobfuscatethelinearstructurewearetryingtocapture.Toavoidt

26、hisissuewecanfirsttakethedotproductoftheargumentsF?(wi?wj)T?wk?=PikPjk(3)whichpreventsFfrommixingthevectdimensionsinundesirableways.Nextnotethatfwdwdcooccurrencematricesthedistinctionbetweenawdacontextwdisarbitrarythatwe

27、arefreetoexchangethetworoles.Todosoconsistentlywemustnotonlyexchangew??wbutalsoX?XT.OurfinalmodelshouldbeinvariantunderthisrelabelingbutEqn.(3)isnot.Howeverthesymmetrycanberestedintwosteps.FirstwerequirethatFbeahomomphis

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論