版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Proceedingsofthe2014ConferenceonEmpiricalMethodsinNaturalLanguageProcessing(EMNLP)pages1532–1543October25292014DohaQatar.c?2014AssociationfComputationalLinguisticsGloVe:GlobalVectsfWdRepresentationJeffreyPenningtonRidSoc
2、herChristopherD.ManningComputerScienceDepartmentStanfdUniversityStanfdCA94305bstractRecentmethodsflearningvectspacerepresentationsofwdshavesucceededincapturingfinegrainedsemanticsyntacticregularitiesusingvectarithmeticbu
3、ttheiginoftheseregularitieshasremainedopaque.Weanalyzemakeexplicitthemodelpropertiesneededfsuchregularitiestoemergeinwdvects.Theresultisanewgloballogbilinearregressionmodelthatcombinestheadvantagesofthetwomajmodelfamilie
4、sintheliterature:globalmatrixfactizationlocalcontextwindowmethods.Ourmodelefficientlyleveragesstatisticalinfmationbytrainingonlyonthenonzeroelementsinawdwdcooccurrencematrixratherthanontheentiresparsematrixonindividualco
5、ntextwindowsinalargecpus.Themodelproducesavectspacewithmeaningfulsubstructureasevidencedbyitsperfmanceof75%onarecentwdanalogytask.Italsooutperfmsrelatedmodelsonsimilaritytasksnamedentityrecognition.1IntroductionSemanticv
6、ectspacemodelsoflanguagerepresenteachwdwitharealvaluedvect.Thesevectscanbeusedasfeaturesinavarietyofapplicationssuchasinfmationretrieval(Manningetal.2008)documentclassification(Sebastiani2002)questionanswering(Tellexetal
7、.2003)namedentityrecognition(Turianetal.2010)parsing(Socheretal.2013).Mostwdvectmethodsrelyonthedistanceanglebetweenpairsofwdvectsastheprimarymethodfevaluatingtheintrinsicqualityofsuchasetofwdrepresentations.RecentlyMiko
8、lovetal.(2013c)introducedanewevaluationschemebasedonwdanalogiesthatprobesthefinerstructureofthewdvectspacebyexaminingnotthescalardistancebetweenwdvectsbutrathertheirvariousdimensionsofdifference.Fexampletheanalogy“kingis
9、toqueenasmanistowoman”shouldbeencodedinthevectspacebythevectequationking?queen=man?woman.Thisevaluationschemefavsmodelsthatproducedimensionsofmeaningtherebycapturingthemulticlusteringideaofdistributedrepresentations(Beng
10、io2009).Thetwomainmodelfamiliesflearningwdvectsare:1)globalmatrixfactizationmethodssuchaslatentsemanticanalysis(LSA)(Deerwesteretal.1990)2)localcontextwindowmethodssuchastheskipgrammodelofMikolovetal.(2013c).Currentlybot
11、hfamiliessuffersignificantdrawbacks.WhilemethodslikeLSAefficientlyleveragestatisticalinfmationtheydorelativelypolyonthewdanalogytaskindicatingasuboptimalvectspacestructure.Methodslikeskipgrammaydobetterontheanalogytaskbu
12、ttheypolyutilizethestatisticsofthecpussincetheytrainonseparatelocalcontextwindowsinsteadofonglobalcooccurrencecounts.Inthiswkweanalyzethemodelpropertiesnecessarytoproducelineardirectionsofmeaningarguethatgloballogbilinea
13、rregressionmodelsareappropriatefdoingso.Weproposeaspecificweightedleastsquaresmodelthattrainsonglobalwdwdcooccurrencecountsthusmakesefficientuseofstatistics.Themodelproducesawdvectspacewithmeaningfulsubstructureasevidenc
14、edbyitsstateoftheartperfmanceof75%accuracyonthewdanalogydataset.Wealsodemonstratethatourmethodsoutperfmothercurrentmethodsonseveralwdsimilaritytasksalsoonacommonnamedentityrecognition(NER)benchmark.Weprovidethesourcecode
15、fthemodelaswellastrainedwdvectsat:nlp.stanfd.eduprojectsglove.1532Table1:Cooccurrenceprobabilitiesftargetwdsicesteamwithedcontextwdsfroma6billiontokencpus.Onlyintheratiodoesnoisefromnondiscriminativewdslikewaterfashionca
16、nceloutsothatlargevalues(muchgreaterthan1)crelatewellwithpropertiesspecifictoicesmallvalues(muchlessthan1)crelatewellwithpropertiesspecificofsteam.ProbabilityRatiok=solidk=gask=waterk=fashionP(k|ice)1.910?46.610?53.010?3
17、1.710?5P(k|steam)2.210?57.810?42.210?31.810?5P(k|ice)P(k|steam)8.98.510?21.360.96contextofwdi.Webeginwithasimpleexamplethatshowcaseshowcertainaspectsofmeaningcanbeextracteddirectlyfromcooccurrenceprobabilities.Considertw
18、owdsijthatexhibitaparticularaspectofinterestfconcretenesssupposeweareinterestedintheconceptofthermodynamicphasefwhichwemighttakei=icej=steam.Therelationshipofthesewdscanbeexaminedbystudyingtheratiooftheircooccurrenceprob
19、abilitieswithvariousprobewdsk.Fwdskrelatedtoicebutnotsteamsayk=solidweexpecttheratioPikPjkwillbelarge.Similarlyfwdskrelatedtosteambutnoticesayk=gastheratioshouldbesmall.Fwdsklikewaterfashionthatareeitherrelatedtobothices
20、teamtoneithertheratioshouldbeclosetoone.Table1showstheseprobabilitiestheirratiosfalargecpusthenumbersconfirmtheseexpectations.Comparedtotherawprobabilitiestheratioisbetterabletodistinguishrelevantwds(solidgas)fromirrelev
21、antwds(waterfashion)itisalsobetterabletodiscriminatebetweenthetworelevantwds.Theaboveargumentsuggeststhattheappropriatestartingpointfwdvectlearningshouldbewithratiosofcooccurrenceprobabilitiesratherthantheprobabilitiesth
22、emselves.NotingthattheratioPikPjkdependsonthreewdsijkthemostgeneralmodeltakesthefmF(wiwj?wk)=PikPjk(1)wherew∈Rdarewdvects?w∈RdareseparatecontextwdvectswhoserolewillbediscussedinSection4.2.Inthisequationtherighthsideisext
23、ractedfromthecpusFmaydependonsomeasofyetunspecifiedparameters.ThenumberofpossibilitiesfFisvastbutbyenfcingafewdesideratawecanauniquechoice.FirstwewouldlikeFtoencodetheinfmationpresenttheratioPikPjkinthewdvectspace.Sincev
24、ectspacesareinherentlylinearstructuresthemostnaturalwaytodothisiswithvectdifferences.WiththisaimwecanrestrictourconsiderationtothosefunctionsFthatdependonlyonthedifferenceofthetwotargetwdsmodifyingEqn.(1)toF(wi?wj?wk)=Pi
25、kPjk.(2)NextwenotethattheargumentsofFinEqn.(2)arevectswhiletherighthsideisascalar.WhileFcouldbetakentobeacomplicatedfunctionparameterizedbye.g.aneuralwkdoingsowouldobfuscatethelinearstructurewearetryingtocapture.Toavoidt
26、hisissuewecanfirsttakethedotproductoftheargumentsF?(wi?wj)T?wk?=PikPjk(3)whichpreventsFfrommixingthevectdimensionsinundesirableways.Nextnotethatfwdwdcooccurrencematricesthedistinctionbetweenawdacontextwdisarbitrarythatwe
27、arefreetoexchangethetworoles.Todosoconsistentlywemustnotonlyexchangew??wbutalsoX?XT.OurfinalmodelshouldbeinvariantunderthisrelabelingbutEqn.(3)isnot.Howeverthesymmetrycanberestedintwosteps.FirstwerequirethatFbeahomomphis
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2010-2016精選論文2014-1408.5882v2
- 2010-2016精選論文2015-1503.04069
- 2010-2016精選論文2014-deepface-closing-the-gap-to-human-level-performance
- 2010-2016精選論文2016-shahriari-bayesopt-ieee-2016
- 2010-2016精選論文2013-1312.5602v1
- 2010-2016精選論文2013-wang_iccv13
- 2010-2016精選論文2015_batch_normalization_accelerating_deep_network_training_by_reducing_internal_covariate_shift
- 高中物理選修3-3(2010-2016年)高考題精選(含解析)
- 山東高考英語(yǔ)作文題及范文(2010-2016)
- 2010-2016年南京中考數(shù)學(xué)試題及答案
- 2010-2016年碩士研究生畢業(yè)情況
- 當(dāng)下中國(guó)電影的救贖性研究(2010-2016).pdf
- 2010-2016司考國(guó)際私法司考真題及解析
- 2010-2016生命科學(xué)技術(shù)學(xué)院獲獎(jiǎng)情況
- 國(guó)產(chǎn)系列電影傳播效果研究(2010-2016年)_2129.pdf
- 2010-2016年考研英語(yǔ)二歷年真題及答案解析
- 次北固山下-++中考古詩(shī)賞析要點(diǎn)解析++2010-2016
- 北京大學(xué)社會(huì)工作考研真題2010-2016
- 2010-2016年考研英語(yǔ)二歷年真題及答案解析(完整版)
- 新浪網(wǎng)2010-2016年性工作者媒介形象研究.pdf
評(píng)論
0/150
提交評(píng)論