版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、Department of AutomationXiamen UniversityYouchun Ji, Wenxing Hong*, Jianwei QiNovember, 2015,Missing Value Prediction Using Co-clustering and RBF for Collaborative Filtering,,1,Case,i.xmrc.com.cn,Website,,Interest,550
2、1.cn,17du.info,Job recommendation,Expert finding,News recommendation,2012-2014,2014-now,2014-now,2,Outline,,Introduction,,Algorithms & Experiments,,The Problem Definition,3,Introduction,Jannach, D., M. Zanker, A. Fel
3、fernig, &G. Friedrich, Recommender systems: an introduction. 2010: Cambridge University Press.Zheng, L., L. Li, W. Hong, &T. Li, PENETRATE: Personalized news recommendation using ensemble hierarchical clustering
4、. Expert Systems with Applications, 2013. 40(6): p. 2127-2136.Das, A.S., M. Datar, A. Garg, &S. Rajaram. Google news personalization: scalable online collaborative filtering. in Proceedings of the 16th international
5、 conference on World Wide Web. 2007. ACM.Breese, J.S., D. Heckerman, &C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. in Proceedings of the Fourteenth conference on Uncertainty in
6、artificial intelligence. 1998. Morgan Kaufmann Publishers Inc.,Help users find interesting articles that match the users’ preference as much as possible.,4,Introduction,,,,Collaborative filtering is one of the most succe
7、ssful methods for news recommendation systems.,Pazzani, M.J., A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 1999. 13(5-6): p. 393-408.Huang, Z., H. Chen, &D.
8、 Zeng, Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems (TOIS), 2004. 22(1): p. 116-142.Hofmann, T., Latent semantic models
9、for collaborative filtering. ACM Transactions on Information Systems (TOIS), 2004. 22(1): p. 89-115.Blei, D.M., A.Y. Ng, &M.I. Jordan, Latent dirichlet allocation. The Journal of machine Learning research, 2003. 3:
10、p. 993-1022.,5,Motivation,Zhang, S., W. Wang, J. Ford, &F. Makedon. Learning from Incomplete Ratings Using Non-negative Matrix Factorization. in SDM. 2006. SIAM.Dhillon, I.S. Co-clustering documents and words using
11、bipartite spectral graph partitioning. in Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. 2001. ACM.,The sparsity of user-item rating matrix will lead to the negativ
12、e effect of collaborative filtering algorithm.,The number of news which users have read is far less than the news published on the website.,6,Outline,,Introduction,,Algorithms & Experiments,,The Problem Definition,7,
13、The Problem Definition,,,,,,George, T., &S. Merugu. A scalable collaborative filtering framework based on co-clustering. in Data Mining, Fifth IEEE International Conference on. 2005. IEEE.,,,,8,Outline,,Introduction,
14、,Algorithms & Experiments,,The Problem Definition,9,Data sample – Reading History,,,,News ID,User ID,10,Algorithms – Flow chart,,,,,,,,11,Algorithms – Co-clustering,,,,,,,,,0.8756,,,0.7535,0.9400,,0.2241,,1. Hu, W.,
15、W. Yong-Ji, W. Zhe, W. Xiu-Li, et al., Two-Phase Collaborative Filtering Algorithm Based on Co-Clustering. Journal of Software. 21: p. 1042-1054 (in Chinese).2. George, T., &S. Merugu. A scalable collaborative filte
16、ring framework based on co-clustering. in Data Mining, Fifth IEEE International Conference on. 2005. IEEE.3. Dhillon, I.S. Co-clustering documents and words using bipartite spectral graph partitioning. in Proceedings of
17、 the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. 2001. ACM.,12,Algorithms - RBF,,,,,,,,1. https://en.wikipedia.org/wiki/Radial_basis_function_network.2. Fuliang, X., &Z. Huiyi
18、ng, A Research of Collaborative Filtering Recommender MethodBased on SOM and RBFN Filling Missing Values. XIANDAI TUSHU QINGBAO JISHU, 2014. 7/8: p. 56-63 (in Chinese).,13,Platform - http://yiqidu.xmu.edu.cn/,14,Data set
19、 – XMU News,The experiment data comes from Xiamen University news reading website which is focus on campus news. It includes 9502 users, 6372 news and 932640 rating. The sparseness of the user-item rating matrix is 98.46
20、%. The data set was divided into testing set and training sets.,Rating:: UserID:: NewsID:: News title,1. Jiang, S., &W. Hong. A vertical news recommendation system: CCNS—An example from Chinese campus news reading sy
21、stem. in Computer Science & Education (ICCSE), 2014 9th International Conference on. 2014. IEEE.,15,Experiments,,,,,,,,The number of co-clustering is 36 in the experiment. After prediction the missing values, the spa
22、rseness of the user-item rating matrix reduce to about 60%.,Before>0.95,After<0.65,,co- clustering number,sparseness,16,Experiments,,,,,,,,As the experiment result shows, the prediction method that combine c
23、o-clustering and RBF work effective on XMUNEWS data set. The root mean square error is 1.553.,,17,Outline,,Introduction,,Algorithms & Experiments,,The Problem Definition,18,Conclusion,,,,Before prediction, the sparse
24、ness of the user-item rating matrix is above 96%. But after prediction, it reduce to below 60%.The root mean square error of true rating values and prediction rating values is 1.553 on XMUNEWS data set. As the experimen
25、t result shows, the combining algorithm is better than the separate algorithm.We built an online website to collect data and do experiments (http://yiqidu.xmu.edu.cn/).For future work, we will concentrate on how to imp
26、rove the computational efficiency and how to choose the number of clusters.,19,References,,Jannach, D., M. Zanker, A. Felfernig, &G. Friedrich, Recommender systems: an introduction. 2010: Cambridge University Press.
27、Zheng, L., L. Li, W. Hong, &T. Li, PENETRATE: Personalized news recommendation using ensemble hierarchical clustering. Expert Systems with Applications, 2013. 40(6): p. 2127-2136.Das, A.S., M. Datar, A. Garg, &S
28、. Rajaram. Google news personalization: scalable online collaborative filtering. in Proceedings of the 16th international conference on World Wide Web. 2007. ACM.Breese, J.S., D. Heckerman, &C. Kadie. Empirical anal
29、ysis of predictive algorithms for collaborative filtering. in Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence. 1998. Morgan Kaufmann Publishers Inc.Pazzani, M.J., A framework for colla
30、borative, content-based and demographic filtering. Artificial Intelligence Review, 1999. 13(5-6): p. 393-408.Huang, Z., H. Chen, &D. Zeng, Applying associative retrieval techniques to alleviate the sparsity problem
31、in collaborative filtering. ACM Transactions on Information Systems (TOIS), 2004. 22(1): p. 116-142.Hofmann, T., Latent semantic models for collaborative filtering. ACM Transactions on Information Systems (TOIS), 2004.
32、22(1): p. 89-115.Blei, D.M., A.Y. Ng, &M.I. Jordan, Latent dirichlet allocation. The Journal of machine Learning research, 2003. 3: p. 993-1022.Zhang, S., W. Wang, J. Ford, &F. Makedon. Learning from Incomplete
33、 Ratings Using Non-negative Matrix Factorization. in SDM. 2006. SIAM.Dhillon, I.S. Co-clustering documents and words using bipartite spectral graph partitioning. in Proceedings of the seventh ACM SIGKDD international co
34、nference on Knowledge discovery and data mining. 2001. ACM.George, T., &S. Merugu. A scalable collaborative filtering framework based on co-clustering. in Data Mining, Fifth IEEE International Conference on. 2005. I
35、EEE.https://en.wikipedia.org/wiki/Radial_basis_function_network.Fuliang, X., &Z. Huiying, A Research of Collaborative Filtering Recommender MethodBased on SOM and RBFN Filling Missing Values. XIANDAI TUSHU QINGBAO
36、JISHU, 2014. 7/8: p. 56-63 (in Chinese).Jiang, S., &W. Hong. A vertical news recommendation system: CCNS—An example from Chinese campus news reading system. in Computer Science & Education (ICCSE), 2014 9th Inte
37、rnational Conference on. 2014. IEEE.,,20,Acknowledgment,The research was supported by the National Natural Science Foundation of China under Grant No.61303081 and by the Fundamental Research Funds for the Xiamen Universi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 稀疏分布波長轉(zhuǎn)換的光突發(fā)交換網(wǎng)絡(luò)路由優(yōu)化問題研究.pdf
- 光突發(fā)交換網(wǎng)絡(luò)中路由波長分配算法研究.pdf
- 波長轉(zhuǎn)換能力受限的光突發(fā)交換網(wǎng)絡(luò)中的波長分配機制.pdf
- 有限波長轉(zhuǎn)換能力的光突發(fā)交換網(wǎng)絡(luò)關(guān)鍵技術(shù)研究.pdf
- 波長轉(zhuǎn)換受限的光突發(fā)交換網(wǎng)的競爭解決機制.pdf
- 光突發(fā)交換網(wǎng)絡(luò)與光路交換網(wǎng)絡(luò)的互連.pdf
- 光突發(fā)交換網(wǎng)絡(luò)若干沖突問題研究.pdf
- 光突發(fā)交換網(wǎng)絡(luò)中的多路由機制研究.pdf
- 光突發(fā)交換網(wǎng)絡(luò)中偏射路由算法的研究.pdf
- 光突發(fā)交換網(wǎng)絡(luò)的性能研究.pdf
- 光突發(fā)交換網(wǎng)絡(luò)競爭控制研究.pdf
- 光突發(fā)交換網(wǎng)絡(luò)數(shù)據(jù)信道調(diào)度問題研究.pdf
- 光突發(fā)交換網(wǎng)絡(luò)區(qū)分服務(wù)研究.pdf
- 光突發(fā)交換網(wǎng)絡(luò)的QoS策略研究.pdf
- 光突發(fā)交換網(wǎng)絡(luò)的接入性能研究.pdf
- 光突發(fā)交換網(wǎng)絡(luò)中幀結(jié)構(gòu)與路由設(shè)計的研究.pdf
- 分布式波長路由光突發(fā)交換關(guān)鍵技術(shù).pdf
- 光突發(fā)交換網(wǎng)絡(luò)中的匯聚算法研究.pdf
- 光突發(fā)交換網(wǎng)絡(luò)關(guān)鍵技術(shù)的研究.pdf
- 光突發(fā)交換網(wǎng)絡(luò)中TCP性能的研究.pdf
評論
0/150
提交評論