版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 2018年專升本高等數(shù)學入學考試復習題</p><p> 注:答案一律寫在答題卷上,寫在試題上無效</p><p> 考生注意:根據(jù)國家要求,試卷中正切函數(shù)、余切函數(shù)、反正切函數(shù)、反余切函數(shù)分別用來表示。</p><p><b> 單項選擇題 </b></p><p> 1.設是奇函數(shù),是偶
2、函數(shù),則是【 】</p><p> A.即不是奇函數(shù),又不是偶函數(shù) B.偶函數(shù)</p><p> C.有可能是奇函數(shù),也可能是偶函數(shù) D.奇函數(shù)</p><p><b> 2.極限【 】</b></p><p> A. B. C.
3、 D.</p><p> 3.因為,那么【 】</p><p> A. B. C. D.</p><p> 4.若,則【 】</p><p> A. B. C. D.</p><p> 5.設,用微分求得的近似值為【
4、 】</p><p> A. B. C. D.</p><p> 6.設,則【 】</p><p> A. B. C. D.</p><p> 7.設,則【 】</p><p> A. B. C.
5、 D.</p><p> 8.下列函數(shù)中,在閉區(qū)間上滿足羅爾定理條件的是【 】</p><p> A. B. C. D.</p><p> 9.函數(shù)在區(qū)間【 】</p><p> A.內單調減 B.內單調增</p><p>
6、 C.內單調減 D.內單調減</p><p> 10.不定積分【 】</p><p> A. B. C. D.</p><p> 11.不定積分【 】</p><p> A. B. C. D.</p><p> 12.已知在某
7、鄰域內連續(xù),且,,則在 處 【 】</p><p> A.不可導 B.可導但 C.取得極大值 D.取得極小值</p><p> 13.廣義積分【 】</p><p> A. B. C. D.</p><p> 14.函數(shù)在點為【 】</p><p> A
8、.駐點 B.極大值點 C.極小值點 D.間斷點</p><p> 15.定積分【 】</p><p> A. B. C. D.</p><p> 16.設在區(qū)間上,令,,。則【 】</p><p> A. B. C. D
9、.</p><p> 17.如果在有界閉區(qū)域上連續(xù),則在該域上【 】</p><p> A.只能取得一個最大值 B.只能取得一個最小值</p><p> C.至少存在一個最大值和一個最小值 D.至多存在一個最大值和一個最小值</p><p> 18.函數(shù),則【 】</p>
10、;<p> A. B. C. D.</p><p><b> 19.則【 】</b></p><p> A. B. C. D.</p><p> 20.函數(shù)的水平漸近線方程為【 】</p><p> A.
11、 B. C. D.</p><p> 21.的定義域是 ( )</p><p> A.() B.() C. D.實數(shù)集</p><p> 22 .函數(shù)在下列哪一個區(qū)間上有界?( ).</p><p> A.(0,1) B.(1,2)
12、 C.(2,3) D.(2,+)</p><p> 23 .若函數(shù)的定義域為[0,1],則函數(shù)定義域為( )</p><p> A. B. C. D.</p><p> 24. 鄰域是指 ( )</p><p>
13、A. B. </p><p> C.() D.</p><p> 25. 函數(shù) ( )</p><p> A.圖象關于原點對稱 B.偶函數(shù)</p><p> C.單調遞增函數(shù) D.有界函數(shù)</p><
14、;p> 26. 函數(shù)的周期是 ( )</p><p> A. B. C. D.</p><p> 27.下列哪一個函數(shù)是奇函數(shù) ( ).</p><p> A. B. C. D.</p><p> 28.下列哪一對函數(shù)相等 (
15、 )</p><p> A. B.</p><p> C. D.</p><p> 29.當時,下列哪一個函數(shù)不是無窮大量 ( )</p><p> A. B. C. D.</p><p> 30.當時,與等
16、價的無窮小量是( )</p><p> A. B. C. D.</p><p><b> 31.( )</b></p><p> A. 0 B. 1 C. 2 D. 不存在</p><p><b> 32.( )&l
17、t;/b></p><p> A. B. 2 C. 3 D. 4</p><p> 33. ( )</p><p> A. B. 5 C. 3 D. </p><p> 34.當 時,函數(shù)在處連續(xù)。( )
18、</p><p> A. B. 2 C. 3 D. 4</p><p> 35.設某商品的總收益R是銷售Q與需求函數(shù)g(Q)的乘積,R=Qg(Q),則銷售單位時的邊際收益是( )</p><p> A. B.g( C. D.</p><p>
19、 36.設某商品總成本函數(shù)C=,當產量Q=10的邊際成本是 ( )</p><p> A.40 B.300 C.30 D.100</p><p> 37.設則( )</p><p> A. 0 B. 1 C. -1 D. 2</p><p>
20、 38.在開區(qū)間內,恒有,則在()內( )</p><p> A .有極值 B.只有極大值 C.只有極小值 D.無極值</p><p> 39.若是極值,則函數(shù)在處必( ).</p><p> A .連續(xù) B.可導 C.不可導 D.有定義</p><p&g
21、t; 40. 若,則是函數(shù)的( )</p><p> A .極值點 B.最值點 C.駐點 D.非極值點</p><p> 41.下列函數(shù)在指定的區(qū)間上,是單調減少的函數(shù)是( )</p><p> A . B. </p><p> C.
22、 D. </p><p> 42.= ( )</p><p> A. B. C. D. </p><p><b> 43.( )</b></p><p> A. B. C.
23、 D. </p><p> 44.( )</p><p> A. 0 B. 2 C. 5 D. 12</p><p> 45.微分方程滿足初始條件的特解是 ( )</p><p> A. B. C. D.
24、</p><p> 46下列函數(shù)中哪一個是微分方程的解( )</p><p> A. B. C. D.</p><p> 47 設A、B任意二事件,則( )</p><p> A.P(A)+P(B)>1+P(AB) B.P(A)+P(B)<
25、1+P(AB) C.P(A)+P(B)1+P(AB)</p><p> 48一盒子中將個紅球,個白球,從中無放回地每次取一球,則第二次取出紅球的概率為 ( )</p><p> A. B. C. D.</p><p> 49. 設矩陣,則運算( )有意義.</p><p> A.
26、 B.AB C.BA D.A</p><p> 50 設A、B均為方陣,則下列結論正確的是 ( ) </p><p> A.()= B. </p><p> C.若 則 D.若=A =B 則()=AB</
27、p><p> 51. 設全集,集合,,則C(其中,C代表A的補集)等于( )</p><p> A.{0,4}B.空集C.{0,3,4}D.{4} </p><p> 52. 函數(shù)的反函數(shù)是( )</p><p><b> A.B.</b></p><p><b>
28、 C.D.</b></p><p> 53.設A.B是兩個非空集合,則aA 是aAB的( )</p><p> A. 充分非必要條件 B. 必要非充分條件 </p><p> C. 充要條件 D. 非充分非必要條件</p>
29、;<p> 54.已知全集U={2,3,5,7,11},A={2,|a-5|,7},CUA={5,11},則a的值為( )</p><p> A.2 B.8 C.2或8 D.-2或-8</p><p> 55.若集合A={a, b, c},為空集合,則下列表示正確的是( )<
30、/p><p> A.{a}A B.{a}A C. aA D.A</p><p> 56.函數(shù)(為常數(shù))在點處( )</p><p> A.連續(xù)且可導 B.不連續(xù)且不可導</p><p> C.連續(xù)但不可導
31、 D.可導但不連續(xù)</p><p> 57. 不等式的解是( )</p><p> A. B.</p><p><b> C.D.</b></p><p> 58. 等于( ) </p><p> A.B.C.D.</p>
32、<p> 59. 函數(shù) 是( )</p><p> A.是奇函數(shù)B.是偶函數(shù)</p><p> C.既不是奇函數(shù)又不是偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)</p><p> 60. 函數(shù)的頂點坐標是( )</p><p> A.B.C.D.</p><p> 61. 已知,則(
33、 )</p><p> A.B.C.D.</p><p> 62. 設為一等差數(shù)列,且,公差,則前項和等于( )</p><p> A.B.C.D.</p><p> 63. 已知直線與直線:垂直,則的斜率為( )</p><p> A.B.C.D.</p><
34、p> 64. 在直角坐標系中,過點作圓的切線,則切線長等于( )</p><p> A.2 B.6C. D.</p><p> 65.= ( ) .</p><p> A. ; B. ; C. ; D. .</p><p> 66.下列
35、關系式正確的是( ).</p><p> A. ; B.; </p><p> C. ; D. </p><p> 67. ,則( )</p><p> A. ; B. ; </p><p&g
36、t; C. ; D. .</p><p> 68.冪級數(shù)的收斂半徑為( ).</p><p> A. ; B. ; C. ; D. .</p><p> 69.二重積分( ).</p><p> A.;
37、 B.;</p><p> C.; D.</p><p> 70.函數(shù)的定義域是( ).</p><p> A.(-2,-1)(-1,+) B.</p><p> C. D.</p><p> 71
38、.設,則等于( ).</p><p> A. B.C.D.</p><p> 72.曲線與( ).</p><p> A.關于直線對稱 B.關于軸對稱</p><p> C.關于軸對稱 D.是同一條曲線</p><p> 73.函數(shù)的
39、反函數(shù)是( ).</p><p> A. B.</p><p> C. D.</p><p> 74.(是常數(shù))是存在的( ).</p><p> A.充分條件 B.必要條件</p><p> C.充分必要條件
40、 D.既非充分也非必要條件</p><p> 75.已知函數(shù)在處可導,則( ).</p><p> A.B.0 C. D.</p><p> 76.設,則( ).</p><p> A. B.</p><p> C.
41、 D.</p><p> 77.設,則( )</p><p> A.B.C.D.</p><p> 78.設函數(shù)f(x)的定義域是[0,1],則f(2x-1)的定義域是( )</p><p> A.[] B. [, 1] </p><p
42、> C. [0, 1] D. [, 1]</p><p> 79.函數(shù)y=的反函數(shù)是( )</p><p> A.y=log2 B. y=log2 </p><p> C. y=log2
43、 D. y=log2</p><p> 80.下列函數(shù)是奇函數(shù)的有( )</p><p> A. 2x2+3x B. </p><p> C. sinx+x3 D. ln(1+x2)</p><p&g
44、t; 81.下列數(shù)列{u n}中 ,收斂的有( )</p><p> A. u n=(-1) n B. u n=(-1)</p><p> C. u n=sin D. u n=2n</p><p> 82.當x→0時,2sinx cosx與x比較是( )無窮小
45、量。</p><p> A. 等價 B. 同階但不等價 C. 較高階 D. 較低階</p><p> 83.下列等式成立的是( )</p><p> A. B.</p><p> C. D.<
46、;/p><p> 84.曲線y=x3+3x2-5相切且與直線6x+2y-1=0平行的直線是( )</p><p> A. x+3y+6=0 B. 3x+y+6=0</p><p> C. 3x-y+6=0 D. x-3y+6=0</p>
47、<p> 85.(x0)=0是函數(shù)f(x)在x0處取極值的( )</p><p> A. 充分條件 B. 必要條件</p><p> C. 充要條件 D. 既非充分又非必要條件 </p><p> 86.函數(shù)y=的定義域是( )
48、</p><p> A.{x|x∈R,x≠kπ+,k∈Z} B.{x|x∈R,x≠kπ+且x≠kπ+,k∈Z}</p><p> C.{x|x∈R,x≠kπ+,k∈Z} D.{x|x∈R,x≠kπ+且x≠kπ,k∈Z}</p><p> 87.函數(shù)y=3x+1(-1≤x<0)的反函數(shù)是 ?。?)</p><p&g
49、t; A. y=1+log3x(x>0) B. y=-1+log3x(x>0)</p><p> C. y=1+log3x(1≤x<3) D. y=-1+log3x(1≤x<3)</p><p> 88.已知向量a,b和實數(shù),下列等式中錯誤的是 ( )</p><p> A. |a|=
50、 B. |a·b|=|a|·|b| </p><p> C. D. </p><p> 89.設f(x)=3x+5,則f[f(x)-2]等于( )</p><p> A.9x+14 B.3x+3 C.9x-14
51、 D.3x-3</p><p> 90.已知則必有 ?。?)</p><p> A. B. C. D. </p><p> 91.若函數(shù)f(x)=asin(ax)+acos(ax) (a>0)的最大值是,則函數(shù)的最小正周期是 ( )</p><p> A.
52、 B. C. D.</p><p> 92.不等式|3x-12|的整數(shù)解個數(shù)是 ?。?)</p><p> A. 7 B. 6 C. 5 D. 4</p><p> 93.與命題等價
53、的命題是 ?。?) </p><p> A. B. </p><p> C. D. </p><p> 94.在等比數(shù)列 ( )</p><p> A. B. C. D. &l
54、t;/p><p> 95.把函數(shù)的圖象向左平移a個單位,所得的圖象關與y軸對稱,則a的最小值為( )</p><p> A. B. C. D. </p><p> 96.若函數(shù)f(x)滿足f(x+3)=x,的定義域為[1,4],則f(x)的定義域為 ( )</p>
55、;<p> A. [1,4] B. [2,8] C. [4,7] D. [3,7]</p><p> 97.設集合P={X|x2-4x-5,0},Q={X| |x|-a}.能使成立的a的值的集合為 ( )</p>
56、<p> A. {a|a.5} B. {a|a5} C. {a|-1,a,5} D. {a|a>1}</p><p> 98.若奇函數(shù)y=f(x) (x)當時,f(x)=x-1, 則不等式f(x-1)<0的解集是 ( )</p&
57、gt;<p> A.{x|x<0或<x<2} B.{x|1<x<2}</p><p> C.{x|-1<x<0} D.{x|x<2或1<x<0}</p><p> 99.ab≤0是使不等式|a-b|≤|a|+|b
58、|等號成立的( )</p><p> A.充分不必要條件 B.必要不充分條件 </p><p> C.充要條件 D.既不充分也不必要條件</p><p> 100.a≠b且ab≠0,則方程ax-y+b=0和bx2+ay2=ab表示曲線可為下列中的?。?)</p><p> A. B.
59、 C. D.</p><p> 101.設f (x)=Asin(ωx+φ)(A>0,ω>0)的圖象關于直線x=對稱,它的最小正周期是π,則f (x)的圖象的一個對稱中心是( )</p><p> A.(,1) B.(,0) C.(,0) D.(-,0)</p><p> 102.不等式
60、≥0的解集是?。?)</p><p> A.[-3,-1)∪(-1,1) B.[-3,1)</p><p> C.(-∞,-3]∪(-1,+∞) D.[-3,-1]</p><p> 103.在△ABC中,∠A=60°,AC=,BC=,則∠B=?。?)</p><p> A.45
61、° B.30° C.45°或135° D.30°或45° </p><p> 104.某班試用電子投票系統(tǒng)選舉班干部候選人.全班k名同學都有選舉權和被選舉權,他們的編號分別為1,2,…,k.規(guī)定:同意按“1”,不同意(含棄權)按“0”,令</p><p><b> aij=&
62、lt;/b></p><p> 其中i=1,2,…,k,且j=1,2,…,k,則同時同意第1,2號同學當選的人數(shù)為 ( )</p><p> A.a11+a12+…+a1k+a21+a22+…+a2k B.a11+a21+…+ak1+a12+a22+…+ak2 </p><p> C.a11a12+a21a22+…+ak1ak2
63、 D.a11a21+a12a22+…+a1ka2k</p><p> 105.函數(shù)=是 ( )</p><p> A.奇函數(shù)B.非奇非偶函數(shù)C.偶函數(shù) D.無法判斷</p><p> 106.函數(shù)f(x)=x (
64、 )</p><p> A.在(-,+)內有界 B.在(-,+)內無界</p><p> C.當x時有極限 D.當x時是無窮大量</p><p> 107.設f(x)=,則等于 ( )</p><p> A.ln3 B.
65、 C.ln3 D.</p><p> 108.已知,則f(1)等于 ( )</p><p> A.1 B.2 C.3 D.4 </p><p> 109.定積分 ( )</p><
66、;p> A.; B.; C.; D..</p><p> 110.設函數(shù)的定義域為[0,5],則的定義域是( )</p><p> A. B.C.[0,5] D.</p><p> 111.若集合A={a, b, c},為空集合,則下列表
67、示正確的是( )</p><p> A.{a}AB.{a}AC.aAD.A</p><p> 112.函數(shù)(為常數(shù))在點處( )</p><p> A.連續(xù)且可導 B.不連續(xù)且不可導</p><p> C.連續(xù)但不可導 D.可導但不連續(xù)<
68、;/p><p> 113、設函數(shù)的定義域為[0,5],則的定義域是( )</p><p> A、B、C、[0,5]D、</p><p> 114.若時, 與是等價無窮小,則a=( ).</p><p> A、-4 B、4 C、1 D、-1 </p><p&g
69、t; 115.設f(x)=3x+5,則f[f(x)-2]等于( )</p><p> A、9x+14 B、3x+3 C、9x-14 D、3x-3</p><p> 116、設函數(shù)的定義域是,則的定義域是( )。</p><p> 117、設,則等于( )。</p><p> 118、函
70、數(shù)的最小周期為( )。</p><p> 119、下列函數(shù)中既非奇函數(shù)又非偶函數(shù)的是( )。</p><p> 120、函數(shù)是( )。</p><p> 121、函數(shù),當時的極限為( )。</p><p> 122、下列極限中,正確的是( )。</p><p> 123、當(D)
71、時,函數(shù)是無窮小量( )。</p><p> 124、極限( )。</p><p> 125、已知,其中是常數(shù),則( )。</p><p> 126、設在點處連續(xù),則( )。</p><p> 127、設,則為的( )。</p><p> 128、方程在區(qū)間內( )。<
72、;/p><p> 129、當=( )時,函數(shù)在連續(xù)。</p><p> 130、在點處左、右極限存在且相等是在點處連續(xù)的( )。</p><p> 131、設 ,則=( )。</p><p> 132、設,則( )。</p><p> 133、設可導,,則( )。</p>
73、<p> 134、設,則( )。</p><p> 135、設,則( )。</p><p> 136、使函數(shù)在上滿足羅爾定理的的=( )。</p><p> 137、函數(shù)在區(qū)間內滿足( )。</p><p> 138、設在點取得極小值,則( )。</p><p>
74、 139、滿足方程的點是函數(shù)的( )。</p><p> 140、是函數(shù)在處取極值的( )。</p><p> 141、若,則( )。</p><p> 142、設是的一個原函數(shù),則等式( )成立。</p><p> 143、=( )。</p><p> 144、若,則(
75、)。</p><p> 145、( )。</p><p> 146、( )。 </p><p> 147、( )。</p><p> 148、的值等于( )。</p><p> 149、函數(shù)z=的定義域為( )。</p><p> 150、設,則(
76、 )。</p><p> 151、是二元函數(shù)的駐點,則函數(shù)在該點處( )。</p><p> 152、函數(shù) 在點處( )。</p><p> 153、當( )時,正項級數(shù)收斂。</p><p> 154、無窮級數(shù)的一般項趨于零,是該級數(shù)收斂的( )條件。</p><p> 155、微
77、分方程滿足的特解是( )。</p><p><b> 156、</b></p><p><b> 157、</b></p><p><b> 158、</b></p><p><b> 159、</b></p><p>
78、;<b> 160、</b></p><p><b> 161、</b></p><p><b> 162、</b></p><p><b> 163、</b></p><p><b> 164、</b></p>
79、<p><b> 165、</b></p><p><b> 166、</b></p><p><b> 167、</b></p><p><b> 168、</b></p><p><b> 169、</b>
80、</p><p><b> 170、</b></p><p><b> 171、</b></p><p><b> 172、</b></p><p><b> 173、</b></p><p><b> 174、
81、</b></p><p><b> 175、</b></p><p><b> 176、</b></p><p><b> 177、</b></p><p><b> 178、</b></p><p><b
82、> 179、</b></p><p><b> 180、</b></p><p><b> 181、</b></p><p><b> 182、</b></p><p><b> 183、</b></p><
83、p><b> 184、</b></p><p><b> 185、</b></p><p><b> 186、</b></p><p><b> 187、</b></p><p><b> 188、</b></p
84、><p><b> 189、</b></p><p><b> 190、</b></p><p><b> 191、</b></p><p><b> 192、</b></p><p><b> 193、</b
85、></p><p><b> 194、</b></p><p><b> 195、</b></p><p><b> 196、</b></p><p><b> 197、</b></p><p><b>
86、198、</b></p><p><b> 199、</b></p><p><b> 200、</b></p><p><b> 201、</b></p><p><b> 202、</b></p><p>&
87、lt;b> 203、</b></p><p><b> 204、</b></p><p><b> 205、</b></p><p><b> 206、</b></p><p><b> 207、</b></p>
88、<p><b> 208、</b></p><p><b> 209、</b></p><p><b> 210、</b></p><p><b> 211、</b></p><p><b> 212、</b>&l
89、t;/p><p><b> 213、</b></p><p><b> 214、</b></p><p><b> 215、</b></p><p><b> 216、</b></p><p><b> 217、&l
90、t;/b></p><p><b> 218、</b></p><p><b> 219、</b></p><p><b> 220、</b></p><p><b> 221、</b></p><p><b&g
91、t; 222、</b></p><p><b> 223、</b></p><p><b> 224、</b></p><p><b> 225、</b></p><p><b> 226、</b></p><p&
92、gt;<b> 227、</b></p><p><b> 228、</b></p><p><b> 229、</b></p><p><b> 230、</b></p><p><b> 231、</b></p&g
93、t;<p><b> 232、</b></p><p><b> 233、</b></p><p><b> 234、</b></p><p><b> 235、</b></p><p><b> 236、</b&g
94、t;</p><p><b> 237、</b></p><p><b> 238、</b></p><p><b> 239、</b></p><p><b> 240、</b></p><p><b> 24
95、1、</b></p><p><b> 242、</b></p><p><b> 243、</b></p><p><b> 244、</b></p><p><b> 245、</b></p><p><
96、;b> 246、</b></p><p><b> 247、</b></p><p><b> 248、</b></p><p><b> 249、</b></p><p><b> 250、</b></p>&l
97、t;p><b> 251、</b></p><p><b> 252、</b></p><p><b> 253、</b></p><p><b> 254、</b></p><p><b> 255、</b><
98、/p><p><b> 二、填空題</b></p><p> 256極限 </p><p> 257極限 </p><p> 258有限 </p><p> 259設,則 </p>&l
99、t;p> 260設,則 </p><p> 261設,則 </p><p> 262.設是的一個原函數(shù),則 </p><p> 263.定積分 </p><p> 264. </p><p> 26
100、5.設 則 , </p><p> 266.函數(shù)的定義域為 .</p><p> 267.已知定義域為,則定義域為 .</p><p> 268. 函數(shù)的定義域為 </p><p> 269 函數(shù)的定義域 , .</p>&
101、lt;p> 270.函數(shù)的反函數(shù)為 .</p><p> 271.函數(shù)是 .</p><p> 272.若函數(shù)在上連續(xù)無零點,則 .</p><p> 273. .</p><p> 274.= .</p><p> 275.若函數(shù)在處可
102、導,則 .</p><p> 276. = .</p><p> 277.若在上連續(xù),則 . </p><p> 278.函數(shù)在一點處連續(xù)與可導的關系是 .</p><p> 279. 已知函數(shù),則 .</p><p>
103、280.曲線上切線平行于軸的點為 .</p><p> 281.曲線上點(1,0)處的切線斜率為 .</p><p> 282.若,則 .</p><p> 283.微分方程的通解為 .</p><
104、;p> 284.微分方程的通解為 </p><p> 285. 微分方程滿足初始條件的通解為 </p><p> 286.設D=,則= .</p><p> 287.二元函數(shù))定義域為 .</p><p> 288.
105、 </p><p> 289.設A=(1,2,3).,則AB= ,BA= .</p><p> 290.設則 .</p><p> 291.兩個矩陣A與B既可以相加又可以相乘的充要條件是 .</p><p> 292.已知P
106、(A)=0.4,P(A+B)=0.7,若A與B不相容,則P(B)= .</p><p> 293.已知P(A)=0.4,P(B)=0.7若A與B相互獨立,則P(AB)= .</p><p> 294.已知~N(),則E()= ,則D()= .</p><p&
107、gt; 295.已知X~B(10,0.8),則 ,= .</p><p><b> 三、求解下列各題</b></p><p><b> 296.求極限 </b></p><p> 297.求曲線在點處的切線和法線方程.</p><p><b>
108、; 298.求不定積分</b></p><p><b> 299.求定積分</b></p><p> 300.計算廣義積分</p><p> 301.求函數(shù)的極值.</p><p><b> 302.求二重積分</b></p><p> 303.計算二
109、重積分.</p><p> 304..求曲線上哪一點的切線與直線平行. </p><p> 305.討論函數(shù)的單調性.</p><p> 306.求曲線與兩直線及圍成的平面圖形的面積。</p><p> 307.設,其中具有二階連續(xù)的偏導數(shù),求.</p><p> 308. 設事件A與B相互獨立,已知P(A)
110、=0.4,P(A+B)=0.6求(B).</p><p> 309.求曲線與直線及所圍成圖形的面積。</p><p><b> 四、證明題</b></p><p> 310.證明方程5x4+4x-2=0在0與1之間至少有一個實根.</p><p> 311.證明:若是連續(xù)函數(shù)且為奇函數(shù),則為偶函數(shù)</p&g
111、t;<p><b> 參考答案:</b></p><p> 考生注意:根據(jù)國家要求,試卷中正切函數(shù)、余切函數(shù)、反正切函數(shù)、反余切函數(shù)分別用來表示。</p><p> 一、單項選擇題 (本大題共20小題,每小題3分,共40分)</p><p><b> 1.【 B 】</b></p>&l
112、t;p><b> 2.【 C 】</b></p><p><b> 3.【 B 】</b></p><p><b> 4.【 C 】</b></p><p><b> 5.【 C 】</b></p><p><b> 6.【 B
113、】</b></p><p><b> 7.【 B 】</b></p><p><b> 8.【 B 】</b></p><p><b> 9.【 C 】</b></p><p><b> 10.【 A 】</b></p>
114、<p><b> 11.【 D 】</b></p><p><b> 12.【 D 】</b></p><p><b> 13.【 D 】</b></p><p><b> 14.【 A 】</b></p><p><b>
115、15.【 B 】</b></p><p><b> 16.【 B 】</b></p><p><b> 17.【 C 】</b></p><p><b> 18.【 D 】</b></p><p><b> 19.【 C 】</b>&l
116、t;/p><p><b> 20.【 C 】</b></p><p><b> 【C】</b></p><p><b> 【C】</b></p><p><b> 【C】</b></p><p><b> 【C】&l
117、t;/b></p><p><b> 【A】</b></p><p><b> 【B】</b></p><p><b> 【A】</b></p><p><b> 【B】</b></p><p><b>
118、【D】</b></p><p><b> 【C】</b></p><p><b> 【B】 </b></p><p><b> 【C】 </b></p><p><b> 【D】 </b></p><p>&l
119、t;b> 【B】 </b></p><p><b> 【B】</b></p><p><b> 【A】</b></p><p><b> 【A】 </b></p><p><b> 【D】 </b></p>
120、<p><b> 【D】 </b></p><p><b> 【C】</b></p><p><b> 【A】 </b></p><p><b> 【C】 </b></p><p><b> 【B】 </b&g
121、t;</p><p><b> 【D】 </b></p><p><b> 【C】</b></p><p><b> 【B】</b></p><p><b> 【D】 </b></p><p><b> 【C】
122、 </b></p><p><b> 【B】 </b></p><p><b> 【C】</b></p><p><b> 【D】</b></p><p><b> 【C】</b></p><p><b
123、> 【B】</b></p><p><b> 【C】</b></p><p><b> 【B】</b></p><p><b> 【C】</b></p><p><b> 【B】</b></p><p>
124、<b> 【B】</b></p><p><b> 【D】</b></p><p><b> 【C】</b></p><p><b> 【D】</b></p><p><b> 【A】</b></p><
125、p><b> 【B】</b></p><p><b> 【C】</b></p><p><b> 【B】</b></p><p><b> 【C】</b></p><p><b> 【D】</b></p>
126、<p><b> 【A】</b></p><p><b> 【C】</b></p><p><b> 【B】</b></p><p><b> 【C】</b></p><p><b> 【D】</b></p
127、><p><b> 【A】</b></p><p><b> 【C】</b></p><p><b> 【C】</b></p><p><b> 【C】</b></p><p><b> 【B】</b>&
128、lt;/p><p><b> 【B】</b></p><p><b> 【A】</b></p><p><b> 【C】</b></p><p><b> 【B】</b></p><p><b> 【B】</b
129、></p><p><b> 【D】</b></p><p><b> 【B】</b></p><p><b> 【D】</b></p><p><b> 【B】</b></p><p><b> 【D】&
130、lt;/b></p><p><b> 【B】</b></p><p><b> 【A】</b></p><p><b> 【A】</b></p><p><b> 【C】</b></p><p><b>
131、 【A】</b></p><p><b> 【C】</b></p><p><b> 【A】</b></p><p><b> 【D】</b></p><p><b> 【C】</b></p><p><b
132、> 【B】</b></p><p><b> 【A】</b></p><p><b> 【C】</b></p><p><b> 【C】</b></p><p><b> 【B】</b></p><p>
133、<b> 【A】</b></p><p><b> 【A】</b></p><p><b> 【C】</b></p><p><b> 【C】</b></p><p><b> 【B】</b></p><
134、p><b> 【A】</b></p><p><b> 【B】</b></p><p><b> 【D】</b></p><p><b> 【B】</b></p><p><b> 【B】</b></p>
135、<p><b> 【C】</b></p><p><b> 【B】</b></p><p><b> 【A】</b></p><p><b> 【A】</b></p><p><b> 【B】</b></p
136、><p><b> 【A】</b></p><p><b> 【B】</b></p><p><b> 【D】</b></p><p><b> 【B】</b></p><p><b> 【A】</b>&
137、lt;/p><p><b> 【C】</b></p><p><b> 【D】</b></p><p><b> 【D】</b></p><p><b> 【C】</b></p><p><b> 【C】</b
138、></p><p><b> 【A】</b></p><p><b> 【B】</b></p><p><b> 【B】</b></p><p><b> 【B】</b></p><p><b> 【D】&
139、lt;/b></p><p><b> 【C】</b></p><p><b> 【D】</b></p><p><b> 【C】</b></p><p><b> 【C】</b></p><p><b>
140、 【C】</b></p><p><b> 【B】</b></p><p><b> 【A】</b></p><p><b> 【C】</b></p><p><b> 【D】</b></p><p><b
141、> 【D】</b></p><p><b> 【D】</b></p><p><b> 【C】</b></p><p><b> 【A】</b></p><p><b> 【B】</b></p><p>
142、<b> 【C】</b></p><p><b> 【C】</b></p><p><b> 【C】</b></p><p><b> 【D】</b></p><p><b> 【B】</b></p><
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西安交通大學現(xiàn)代遠程教育考生報名登記表
- 西安交通大學現(xiàn)代遠程教育學生轉學申請表
- 西安交通大學
- 西安交通大學
- 西安交通大學985
- 西安交通大學少
- 西安交通大學創(chuàng)新報告
- 西安交通大學創(chuàng)新報告
- 2014 年西安交通大學年西安交通大學管理學考研試題
- 西安交通大學設備采購
- 西安交通大學創(chuàng)新報告
- 西安交通大學網(wǎng)絡教育學院遠程教育學生畢業(yè)設計(論文)寫作規(guī)定(修改)
- 西安交通大學院處函件
- 西安交通大學音樂鑒賞題庫
- 西安交通大學實驗報告
- 西安交通大學課表管理規(guī)定
- 西安交通大學網(wǎng)絡教育學習指南
- [西安交通大學]西安交通大學19年5月補考《司法實務》作業(yè)考核試題
- 西安交通大學城學院簡介
- 西安交通大學全校選修課
評論
0/150
提交評論