采礦外文翻譯---采礦對煤層底板斷層活化影響的數(shù)值模擬_第1頁
已閱讀1頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p><b>  英文原文</b></p><p>  Numerical Simulation of Coal Floor Fault Activation Influenced by Mining </p><p>  WANG Lian-guo,MIAO Xie-xing</p><p>  School of Science

2、s,China University of Mining&Technology,Xuzhou,Jiangsu 221008,China</p><p>  Abstract:By means of the numerical simulation software ANSYS,the activation regularity of coal floor faults caused by mining i

3、s simulated.The results indicate that the variation in horizontal,vertical and shear stresses,as well as the horizontal and vertical displacements in the upper and the lower fault blocks at the workface are almost identi

4、cal.Influenced by mining of the floor rock,there are stress releasing and stress rising areas at the upper part and at the footwall of the fault.The distr</p><p>  Key words:mining;fault activation;simulatio

5、n</p><p>  1 Introduction</p><p>  In this paper we attempt to appraise the activation regularity and deformation of coal floor faults caused by mining.Damage mechanisms of rock around coal floo

6、r faults are described from different aspects and in different contexts[1–10].Descriptions can,to some extent,intensify our understanding of coal floor fault activation caused by mining.However, looking at the effect of

7、these views,a mechanical analysis cannot achieve the purpose of pictures and clarity.For a more profound understanding of</p><p>  2 Numerical Calculation of Model Formation</p><p>  Considering

8、 the different fault activations influenced by the workface on the upper and lower fault blocks,we build two calculation models according to the state of the plane strain.Fig.1 is a calculation model(ModelⅠ)of the workfa

9、ce on the lower fault block,showing the loading on the top of the terrane according to the distributional characteristics[11] of mine pressure.Given the conditions of mining technology of the </p><p>  Qinan

10、 mine,the terrane 70 m fore- and-aft the workface and 30 m deep under the coal floor is simulated.The lithology of the floor is Berea sandstone and the elastic modulus E=1.09×104MPa,the Poisson’s ratioμ=0.34,the coh

11、esion C=2.94MPa,the internal friction angleφ=35° and the densityγ=2.5 kN/m3.The calculation model of the workface on the upper part of the fault(ModelⅡ)is the same as that of ModelⅠexcept that the abutment pressure

12、ahead of the workface is on the upper part of the fault.</p><p>  3 Numerical Simulation Results and Analysis</p><p>  For both models,the isoline graphs of horizontal, vertical and shear stress

13、es as well as the horizontal and vertical displacements of modelsⅠandⅡhave been calculated and are plotted respectively as Figs.2–3. </p><p>  3.1 Distribution characteristics of horizontal stresses</p>

14、;<p>  Influenced by mining of the coal floor rock, there are horizontal stress releasing areas and rising areas at the upper part and at the footwall of the fault. The distribution of horizontal stresses is influ

15、enced by the fault and it is obvious that the stress isolines are staggered by the fault face and the stress is concentrated on the rock seam around the two ends of the fault. In model I,stress is concentrated at the sha

16、llow part of the orebody at the footwall of the fault.The horizontal stres</p><p>  horizontal stress becomes 14.6–27.5 MPa.The horizontal stress under the fault face is 4.94–8.16 MPa.The lower part of the m

17、ined-out areas at the fault footwall releases pressure;the horizontal stress is 4.94 MPa. </p><p>  3.2 Distributional characteristics of vertical stresses</p><p>  The distributions of vertical

18、 stresses are also influenced by faults.The stress isolines are staggered by the fault face.The stress is focused on the rock seam round the two ends of the fault. In model I,the stress is concentrated at the lower part

19、of the orebody on the lower fault block.When the depth increases,the extent of the stress concentration in the rock under the coal bed decreases.The vertical stresses of the rock under the coal bed step down from 29.8 MP

20、a to 18.7 MPa.The extent of the</p><p>  3.3 Distributional characteristics of shear stresses</p><p>  The distribution of shear stresses at the upper part and the footwall of the fault are obvi

21、ously different.The distributional characteristics of shear stress isolines are in conflict and the shear stresses are concentrated at the two ends of the fault.In</p><p>  modelⅠ,the stresses under the faul

22、t face evolve from compressive shear stress to tension shear stress.Its value ranges from–5.4 MPa to–0.3 MPa (the minus sign means compressive stress and the positive sign means tension stress).The tension at the upper f

23、ault block face of the shear stress area has a value of 0.3 MPa in the shallow part which gradually increases to 2.56 MPa in the deeper part. In modelⅡ,the stress above the fault face changed from tension shear stress to

24、 compressive shear stress </p><p>  displacement at the footwall of the fault is between 1.3 and 10.9 mm.</p><p>  3.5 Vertical displacement</p><p>  Just as in the foregoing descri

25、ption,during mining,vertical stresses loading on the rock floor will change.At a time,from the front of the coal wall to the mined-out area,advancing in the direction along the workface supporting pressure areas,release

26、pressure areas and stress resuming areas will arise.Related to this development,the rock of the coal floor may become a compressive area,an expanding area and a re-compressive area.The displacement of the rock on the coa

27、l floor reduces with increasi</p><p>  4 Conclusions</p><p>  Given the calculations in our analysis,the following inferences can be drawn:</p><p>  1)Influenced by mining of the fl

28、oor rock,horizontal stress releasing areas and rising areas at the upper part and at the footwall of the fault develop. The distributions of horizontal stresses are influenced by the fault as indicated by the stress isol

29、ines which are staggered at the fault face and the stress is focused on the rock seam around the two ends of the fault.</p><p>  2)The distribution of vertical stresses are also influenced by the fault that

30、as shown by the stress isolines,staggered at the fault face and the stress is concentrated at the rock seam around the two ends of the fault.</p><p>  3)The distribution of shear stresses at the upper part a

31、nd the footwall of the fault are also obviously different.The shear stresses concentrate at the two ends of the fault.</p><p>  4)When the workface is at the footwall of the fault,there is a horizontal tensi

32、on stress area on the upper part of the fault;when the workface is on the upper part of the fault,it has a horizontal compressive stress area at the lower fault block. </p><p>  5)When the workface is on the

33、 lower fault block,the maximum vertical displacement is 5 times larger than that at the upper fault block,which very much increases the chance of a fatal inrush of water from the coal floor.</p><p>  Referen

34、ces</p><p>  [1]Gao Y F,Shi L Q,Lou H J,et al.Water-Inrush Regularity and Water-Inrush Preferred Plane of Coal Floor.Xuzhou:China University of Mining&Technology Publishing House,1999.(In Chinese)</p&

35、gt;<p>  [2]Qian M G,Miao X X,XU J L.The Key Strata Theory of Controlling the Rock Seam.Xuzhou:China University of Mining &Technology Publishing House,2000.(In Chinese)</p><p>  [3]Zhang J C,Zhang

36、 Y Z,Liu T Q.The Seepage Flow in Rock and the Water Inrush in Coal Floor.Beijing:Geological Publishing House,1997.(In Chinese)</p><p>  [4]Wang L G,Song Y.The Non-Linear Characteristic and the Forecast of Wa

37、ter Inrush from Coal Floor.Beijing:Coal Industry Press,2001.(In Chinese)</p><p>  [5]Gong S G.The Basic Application and Example Analysis of ANSYS.Beijing:Machine Press,2003.(In Chinese)</p><p> 

38、 [6]Li H Y,Zhou T P,Liu X X.The Tutorial of Engineering Application of ANSYS.Beijing:China Railway Press,2003.(In Chinese)</p><p>  [7]Wang L G,Song Y.A model to risk assessment for mine water-inrush.Journal

39、 of Engineering Geology,2001,09(02):158–163.</p><p>  [8]Miao X X,Lu A H,Mao X B,et al.Numerical simulation for roadways in swelling rock under coupling function of water and ground pressure.Journal of China

40、 University of Mining&Technolog,2002,12(2):121–125.</p><p>  [9]Wang L G,Bi S J,Song Y.Numerical simulation research on law of deformation and breakage of coal floor.Group Pressure and Strate Control,200

41、4,(4):35–37.(In Chinese)</p><p>  [10]Wang L G,Song Y,Miao X X.Study on prediction of water-inrush from coal floor based on cusp catastrophic model.Chinese Journal of Rock Mechanics and Engineering,2003,22(4

42、):573–577.</p><p>  [11]Jiang J Q.The Stress and the Movement of the Rock Around the Stope.Beijing:Coal Industry Press,1997.(In Chinese)</p><p><b>  中文譯文</b></p><p>  采礦

43、對煤層底板斷層活化影響的數(shù)值模擬</p><p><b>  王連國,繆協(xié)興</b></p><p>  中國礦業(yè)大學(xué),理學(xué)院,中國,江蘇,徐州221008 </p><p>  摘要:利用數(shù)值模擬軟件ANSYS ,模擬采礦引起的底板斷層活化規(guī)律。結(jié)果表明,工作面在斷層上盤和下盤時,橫向、縱向和剪應(yīng)力的變化,以及水平和垂直位移幾乎一樣的。因采

44、礦地面巖石影響,在斷層的上盤和下盤有應(yīng)力降低和壓力上升的地區(qū)。應(yīng)力分布的影響,這樣的斷層的壓力等值線的交錯面臨的過失和強調(diào)的是集中在巖層周圍的兩端。但是斷層的影響,活化的上部或下部斷塊的工作面明顯不同.當(dāng)工作面在斷層的下盤,有一個橫向拉應(yīng)力區(qū)的在斷層的上盤;當(dāng)工作面是在斷層上盤,它有一個壓應(yīng)力水平較低的地區(qū)的工作面斷層塊。當(dāng)工作面在斷層下盤,最大垂直位移比工作面在斷層上盤大5倍,這樣極大地增大致命的底板突水機會。</p>

45、<p>  關(guān)鍵詞:采礦;斷層活化;模擬</p><p><b>  1簡介</b></p><p>  在本文中,我們試圖評價受煤層底板的斷層活化規(guī)律和變形。損害機制所造成的巖石煤層底板斷層周圍描述來自不同方面和在不同情況。說明可以在一定程度上加強我們的理解采礦影響煤層底板斷層活化.然而,從這些觀點的考慮,機械分析無法實現(xiàn)的預(yù)期的目的.為了更深刻的理解受工

46、作面影響斷層活化規(guī)律,我們使用計算機,從而使數(shù)值模擬試驗,并獲得了一系列有價值的結(jié)論。</p><p>  2數(shù)值計算模型的形成</p><p>  考慮到工作面在斷層上下盤位子不同的影響斷層活化,我們建立兩個數(shù)字模型通過不同拉伸狀態(tài).圖1是一個數(shù)值模型(模型Ⅰ)的工作面下盤,顯示的負荷上方的巖層根據(jù)礦山壓力的分布特征.基于現(xiàn)在采礦技術(shù)學(xué)條件祁南煤礦,模擬工作面前70米和縱向的和30米深的

47、煤層底板.底板的巖性是貝雷亞砂巖的彈性模量E = 1.09 × 104MPa時,泊松比μ = 0.34 ,凝聚力ç = 2.94MPa時,內(nèi)摩擦角φ = 35°和容重γ = 2.5 kN/m3。工作面在斷層上盤數(shù)值模型(模式Ⅱ )和模型Ⅰ是一樣的,但前面的支承壓力是在工作面是在斷層上盤的情況下。</p><p><b>  圖1 計算模型</b></p&g

48、t;<p>  3數(shù)值模擬結(jié)果與分析</p><p> ?。ㄒ唬┑戎档乃綉?yīng)力</p><p>  (二)等值線垂直應(yīng)力</p><p><b> ?。ㄈ┘魬?yīng)力等值線</b></p><p> ?。ㄋ模┑戎稻€水平位移</p><p> ?。ㄎ澹┐怪蔽灰频戎稻€</p>

49、<p>  圖2 模型Ⅰ的計算結(jié)果</p><p>  對于這兩種模型,等值線圖的水平,縱向和剪應(yīng)力以及橫向和垂直位移的模型Ⅰ , Ⅱ計算和繪制分別為圖2-3。</p><p>  3.1橫向應(yīng)力分布特征</p><p> ?。ㄒ唬┑戎档乃綉?yīng)力</p><p> ?。ǘ┑戎稻€垂直應(yīng)力</p><p>&l

50、t;b> ?。ㄈ┘魬?yīng)力等值線</b></p><p> ?。ㄋ模┑戎稻€水平位移</p><p> ?。ㄎ澹┐怪蔽灰频戎稻€</p><p>  圖3 模型Ⅱ的計算結(jié)果</p><p>  受開采的煤層底板巖石影響,有水平應(yīng)力降低區(qū)域和不斷上升的斷層上盤。受斷層影響分配的橫向應(yīng)力,很明顯,應(yīng)力等值線是錯開的斷層所面臨的壓力是聚

51、集在斷層巖層周圍的兩端。在模型Ⅰ,強調(diào)的是集中在淺水部分礦體上盤.水平應(yīng)力是6.4-10 MPa. 在斷層面得水平應(yīng)力3.1至4.9MPa。下部采空區(qū)的低斷塊降低壓力,甚至可能反過來向拉應(yīng)力約0.5 MPa。在更深的部分,水平應(yīng)力和壓應(yīng)力輪流逐漸增加。在模式Ⅱ ,應(yīng)力集中在下部礦體低斷塊和橫向應(yīng)力成為14.6-27.5 MPa。水平應(yīng)力下的斷裂面是4.94-8.16MPa。下部采空區(qū)的斷層降低壓力;橫向應(yīng)力是4.94MPa。</p

52、><p>  3.2垂直應(yīng)力分布特征</p><p>  垂直應(yīng)力分布也受到斷層的影響。壓力等值線的交錯由斷層面.應(yīng)力集中在煤層下的斷層兩端。在模型Ⅰ中,應(yīng)力是集中在較低的部分礦體低斷層。當(dāng)深度的增加,度在巖石下的應(yīng)力聚集程降低.垂直應(yīng)力條件下巖石煤層步驟從29.8MPa的18.7 MPa.The程度釋放在上部采空區(qū)減少逐步和垂直應(yīng)力增加1.5強度為8.6 MPa.The垂直強調(diào)在盤故障面對增

53、加8.6MPa至15.4MPa。在模式Ⅱ ,應(yīng)力集中在下部礦體低斷塊。當(dāng)深度增加,煤床下的巖石垂直應(yīng)力集中在47.1 MPa到13.5 MPa.在斷層下盤垂直應(yīng)力增長從2.33 MPa提高7.92 MPa.垂直應(yīng)力在斷層下盤為13.5 MPa。</p><p>  3.3剪應(yīng)力的分布特征</p><p>  在斷層上下盤的剪切應(yīng)力的分布式明顯不同的,剪切應(yīng)力等值線是沖突的,和集中在斷層兩端

54、剪切應(yīng)力相比。模型Ⅰ ,壓力下面臨斷層演變從壓剪應(yīng)力的張應(yīng)力。值范圍從- 5.4MPa至-0.3MPa(減號指壓應(yīng)力和積極的跡象意味著拉應(yīng)力) 。在上斷塊面的張應(yīng)力對剪應(yīng)力地區(qū)有價值0.3MPa的淺層部分,逐步提高到2.56MPa的更深的一部分。在模式Ⅱ的應(yīng)力面對上述故障從緊張到壓剪應(yīng)力剪應(yīng)力和價值不等, 6.6MPa,以-11.6MPa(再次,減號指壓壓力和積極的跡象拉應(yīng)力)。上部部分斷裂面是一個緊張剪應(yīng)力區(qū)和逐步降低的價值從4.99

55、至0.57MPa。</p><p><b>  3.4水平位移</b></p><p>  模型Ⅰ,橫向壓縮病安置低斷塊小,它的價值是0.3-5.6 mm.橫向壓縮病安置在斷層下盤是。最大值為四十二點六毫米,但逐漸下降至0.3毫米日益深入。在模式Ⅱ ,緊張的橫向位移煤炭樓的上半部分的故障范圍從1.3mm到9.10mm.深橫向壓縮位移小,范圍從0.3毫米1.9 mm.橫

56、向位移緊張盤故障是1.3和10.9毫米。</p><p><b>  3.5垂直位移</b></p><p>  正如在上述的描述,在采礦,垂直應(yīng)力裝載的巖石上改變.有時,從煤壁前面到采空區(qū),推進方向沿支撐的工作面壓力區(qū),降低工作壓力和垂直壓力恢復(fù)地區(qū)將上升.重訴這一發(fā)展,巖層的煤層底板可能成為壓區(qū),擴大面積和重新壓縮面積位移巖石上的煤層底板降低日益深入。模型Ⅰ ,壓

57、縮位移在斷層下盤減少21.4毫米,在淺端8.2mm深底的擴大面積減少上部從84毫米到4.9mm從淺到深部。在模式Ⅱ ,壓縮位移在減少斷層下盤在從34.17mm淺端部3.88mm在底和深的擴大面積的上半部分減少從14.28在淺層部分2.17mm的更深一部分。</p><p><b>  4結(jié)論</b></p><p>  鑒于我們的分析計算,可以得出以下推論:</

58、p><p>  1)受采礦地面巖石,橫向應(yīng)力釋放領(lǐng)域和不斷上升的地區(qū)上半部分,并在盤故障發(fā)展。分布橫向應(yīng)力的影響的過失所顯示的壓力等值線是錯開的故障面臨的應(yīng)力集中對巖層周圍的兩端故障。</p><p>  2)垂直分布也強調(diào)受故障,由于所表現(xiàn)出的壓力等值線,交錯在故障面對的壓力是集中在巖層周圍的兩端故障。</p><p>  3)剪應(yīng)力分布的上限部分和下盤的故障也明顯不

59、同,剪應(yīng)力集中在兩個兩端的故障。</p><p>  4)當(dāng)工作面處于盤的故障,有一個橫向拉應(yīng)力區(qū)上部斷裂;當(dāng)工作面于上半部分的故障,它有一個橫向壓縮應(yīng)力區(qū)在較低斷塊。</p><p>  5)當(dāng)工作面是低故障塊,最大垂直位移的5倍大于在上斷塊,這非常多增加了一個致命的突水從煤層底板。</p><p><b>  參考文獻</b></p&

60、gt;<p>  [1] Gao Y F,Shi L Q,Lou H J等.煤層底板突水突規(guī)律與防治.徐州 :中國礦業(yè)大學(xué)出版社, 1999 。 </p><p>  [2]錢鳴高,繆協(xié)興 ,巖層控制的關(guān)鍵層理論.徐州 :中國礦業(yè)大學(xué)出版社, 2000 。 </p><p>  [3] Zhang J C,Zhang Y Z,Liu T Q.滲流在巖石和在煤礦底板突水.北京

61、:地質(zhì)出版, 1997年。 </p><p>  [4]王連國,宋揚,煤礦底板突水的非線性特性及預(yù)測.北京 :煤炭工業(yè)出版社, 2001年。 </p><p>  [5] Gong S G,基本應(yīng)用與實例分析ANSYS.北京 :機械工業(yè)出版社, 2003 。 </p><p>  [6] Li H Y,Zhou T P,Liu X X,ANSYS應(yīng)用工程輔導(dǎo).北京

62、:中國鐵道出版社, 2003 。 </p><p>  [7]王連國,宋元,礦井突水風(fēng)險評估模型.工程地質(zhì)學(xué)報, 2001,09 ( 02 ) :158-163 。</p><p>  [8] 繆協(xié)興,盧愛紅,茅獻彪,數(shù)值仿真膨脹巖巷道耦合作用下的水和地面壓力.中國礦業(yè)大學(xué)學(xué)報, 2002,12( 2 ):121 - 125 。</p><p>  [9]王連國,畢

63、善軍,宋揚,研究煤礦底板的變形與斷裂規(guī)律數(shù)值模擬.壓山壓力與頂板管理, 2004 ,( 4 ) :35 - 37 。 </p><p>  [10]王連國,宋揚,繆協(xié)興,基于尖點災(zāi)難性煤層底板突水模型研究.中國巖石力學(xué)與工程雜志, 2003,22 ( 4 ):573 - 577 。</p><p>  [11] Jiang J Q,回采工作面圍巖運動和應(yīng)力.北京:煤炭工業(yè)出版社,1997年

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論