車輛工程外文翻譯--柴油機(jī)引擎發(fā)展和耐久性_第1頁(yè)
已閱讀1頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  中文4400字,2700單詞,14500英文字符</p><p>  Diesel Engine Development and Durability</p><p>  ADVANCEDDIESEL ENGINE AND AFTERTREATMENT TECHNOLOGY DEVELOPMENT FOR TIER 2 EMISSIONS</p

2、><p>  Rakesh Aneja Detroit Diesel Corporation Brian Bolton Detroit Diesel Corporation</p><p>  Adedejo Bukky Oladipo Detroit Diesel Corporation Zornitza Pavlova-MacKinnon, Detroit Diesel Corporati

3、on Amr Radwan Detroit Diesel Corporation</p><p><b>  ABSTRACT</b></p><p>  Advanced diesel engine and after treatment technologies have been developed for multiple engine and vehicl

4、e platforms. Tier 2 (2007 and beyond) emissions levels have been demonstrated for a light truck vehicle over a FTP-75 test cycle on a vehicle chassis dynamometer. These low emissions levels are obtained while retaining

5、 the fuel economy advantage characteristic of diesel engines.</p><p>  The performance and emissions results were achieved by integrating advanced combustion strategies (CLEAN Combustion) with prototype afte

6、r treatment systems. CLEAN Combustion allows partial control of exhaust species for after treatment integration in addition to simultaneous NOx and PM reduction. Analytical tools enabled the engine and after treatment su

7、b-systems development and system integration. The experimental technology development methodology utilized a range of facilities to streamline d</p><p>  Key Words: diesel engine, Tier 2, SCR, after treatmen

8、t, emissions, urea</p><p>  INTRODUCTION</p><p>  In the late 1990s, fuel use projections were prepared for future transportation requirements. Energy use among automobiles was shown to be fairl

9、y steady for the future outlook from 2000 to 2020, while Class 3 through Class 8 trucks (heavy-duty type vehicles) were predicted to increase marginally over that same twenty-year time frame. However, a significant incre

10、ase was seen in the Class 1 to Class 2 trucks (pickups, vans and SUVs). In some cases, these are used commercially, but the primary sour</p><p>  At that time, it was forecast that the dieselization of the v

11、ehicle fleet, primarily these Class 1 and Class 2 light trucks, would have a significant reduction on the U. S. transportation energy use; however, many people questioned whether the diesel engine's potential to achi

12、eve future Tier 2 emissions would make it a viable option. Those who considered that the emissions hurdle could be overcome, then questioned what the resulting fuel economy improvement would be after all of the NOx abat

13、eme</p><p>  As a response to this, a series of collaborative projects with the Department of Energy were initiated including the DELTA program, and later, the LEADER program at Detroit Diesel Corporation. T

14、he purpose of these programs was to look at the technical viability of meeting Tier 2 emissions and also the fuel economy impact that that would have. The approach that was followed at Detroit Diesel was an integrated an

15、alytical and experimental approach that utilized simulation in the early stages of the</p><p>  Figure 1: “Dieselization” of Vehicle Fleet Offers Significant Reduction to U.S. Transportation Energy Use</p

16、><p>  METHODOLOGY AND RESULTS</p><p>  Control systems were integrated along with the engine control system in a fairly dynamic, yet effective way that led to significant advancements in the overa

17、ll emissions characteristics of the engine while maintaining the inherent fuel economy advantage of the diesel engine over the baseline gasoline engine. Initially, extensive simulation was conducted to design a clean she

18、et engine. This simulation was validated by actually procuring and building the engine and doing the steady state modal dev</p><p>  Following the steady state development, the work and theories were validat

19、ed in a transient engine dynamometer setting where the engine could run transient engine-type of operations. Also, vehicle integration was forecast and vehicle emission types of driving cycles, such as the Federal Urban

20、 Drive Cycle, the FTP-75, the US06, and the Highway Fuel Economy Test Modes were programmed into the transient engine dynamometer. These could be run in a very controlled setting to allow for the control sy</p>&l

21、t;p>  Following development on this workhorse dynamometer system, the engine was used to repower a number of commercial light truck vehicles: Dodge Durango, Dodge Dakota, and also a Class 1 DaimlerChrysler Neon passen

22、ger car vehicle, and validate some of the control system development in calibrations that had been developed. This vehicle integration then led back into the simulation domain to develop higher fidelity control systems a

23、nd calibration development. This path leads through an iterative netw</p><p>  Figure 2: DAKOTA Light Truck Platform</p><p>  As shown in Figure 2, the platform used in the program for the Tier

24、2 demonstration was a DaimlerChrysler Dodge Dakota light truck platform. It was</p><p>  repowered with a DELTA 4-Liter V6 engine [3,4]. This engine used variable geometry turbo charging, common rai

25、l fuel injection, unique high pressure loop, cooled EGR system, created 235 HP at 4000 rpm and has been shown at the 2002 DEER conference and participated in the 2002 Ride-and-Drive in San Diego. Early in the program, a

26、n integrated emission reduction roadmap was developed for the light truck and SUV platform, as shown in Figure 3. It was based on the FTP-75 emission performance and it lo</p><p>  Figure 3: Integrated Emiss

27、ions Reduction Roadmap Light Truck / SUV Platform</p><p>  Once this engine out emission performance was established, then the second goal was identified: tailpipe out emissions, which showed the integration

28、 of this advanced engine control strategy with after treatment. The target for engine out emissions was essentially at a Tier 2 Bin 10 level and then going down very close to a Tier 2 Bin 9 level that was targeted, with

29、the ultimate objective of reaching Tier 2 Bin 5 with the implementation of after treatment.</p><p>  At the 2002 DEER Conference, preliminary results were presented that showed the demonstration of engine ou

30、t FTP-75 emissions at the Tier 2 Bin 10 level without any after treatment [5]. This is significant in that it achieved very low engine out emissions while maintaining very high fuel economy, over 50% better than the gas

31、oline engine that was the baseline powertrain in the vehicle. By adding a catalyzed soot filter, a urea-based SCR technology and related controls, a significant reduction in</p><p>  The accomplishments sin

32、ce the 2002 DEER conference have shown significant improvements in the engine out emissions and are shown in Figure 4. Without any active NOx after treatment, emissions very near the Tier 2 Bin 9 level were achieved: NOx

33、 of ~0.3 grams per mile with very low particulates. This exceeds the roadmap objectives established in the early stages of the program. Adding the urea-based SCR technology to this engine out baseline actually achieved T

34、ier 2 Bin 3 levels over the FTP-75 wh</p><p>  Figure 4: NOx Reduction Via Combustion and Aftertreatment Development Light Truck / SUV Platform</p><p>  One way to show the benefit of advanced t

35、echnologies employed is to categorize the NOx reduction by combustion or engine out as well as by the integration with after treatment by comparing the FTP-75 vehicle out NOx to the FTP-75 engine out NOx. This is shown i

36、n Figure 5. After treatment efficiencies are usually between ~80 - 95% over the FTP-75 cycle. These are fairly high levels of NOx reduction for the low temperature FTP-75 cycle. What the program shows is that significant

37、 reductions were at</p><p>  through engine controls and through advanced capabilities.</p><p>  Figure 5: NOx Reduction Via Combustion and After treatment Development Light Truck / SUV Platform

38、</p><p>  While achieving Tier 2 Bin 3, essentially significantly breaking the traditional NOx/PM tradeoff curve, it is important to identify that that NOx/PM tradeoff curve still remains at each of these in

39、dividual milestones. In the same way, the NOx/Fuel Economy tradeoff curve also remains. We can plot the tradeoff curve for the range of NOx emissions from a Bin 7 to a Bin 3 showing that as NOx is reduced, the fuel econo

40、my for the FTP-75 is also reduced at some level. What is important to identify is t</p><p>  So, for the 2002 Tier 2 Bin 6 level, the fuel economy for the FTP-75 was ~20 miles per gallon for this light truck

41、. In 2003, although we still have this tradeoff with fuel economy and NOx, we can now achieve a Tier 2 Bin 5 level of NOx at the same miles per gallon. This shows ~55% reduction in NOx from the previous level at the same

42、 fuel economy. Alternatively, if we maintain the same NOx, we can increase the fuel economy to a 20.5 mpg with the 2003 level emissions performance identified. Or,</p><p>  we can reduce the NOx significantl

43、y to the Tier 2 Bin 3 level which is more of a 70% reduction in total NOx with minimal degradation in fuel economy. But, the message is that through subsequent iterations of engine development, the fuel economy can be re

44、covered so that there is no significant fuel economy penalty with further reductions in NOx.</p><p>  These results are further demonstrated and prior results have been previously presented, if we compare th

45、e results on the passenger car platform [6-8]. We had a similar roadmap as the light truck, again, identifying two regimes: one with engine out NOx and PM targets over the FTP-75 and one integrated with after treatment l

46、ooking at Tier 2 Bin 5 level. In this case, the engine out baseline was refined early on to a much cleaner level down to a 0.4 g/mi NOx and a .05 g/mi particulate engine out w</p><p>  This project showed a

47、significant improvement in fuel economy with each progressive iteration of the development methodology, where there is essentially a horizontal reduction in NOx without a fuel economy penalty. Tier 2 Bin 5 results were o

48、btained with ~67 mpg combined fuel economy, which is the combination of a FTP-75 and Highway Fuel Economy for this Neon mule vehicle. It clearly shows how the fuel economy can be recovered, or even improved, with succes

49、sive R&D when utilizing an integrated </p><p>  Figure 6: Integrated Emissions Reduction Roadmap Passenger Car Platform SUMMARY AND CONCLUSIONS</p><p>  In summary, this project demonstrated

50、 Tier 2 Bin 3 emissions for the light truck SUV applications, as well as for the passenger car platform, utilizing integrated diesel engine and after treatment technology, in this case, a catalyzed soot filter with a ure

51、a-based SCR system. Tier 2 is also demonstrated for the light truck platform over the US06 cycle and for the FTP-75 results (Tier 2 Bin 3). A 41% fuel economy advantage was demonstrated over the light truck gasoline base

52、line, again with the sa</p><p>  Also, in summary, the development methodology emphasizing integrated testing and analysis was one of the core reasons that the Tier 2 Bin 3 emissions were demonstrated with

53、both the light truck and passenger car platforms in a fairly efficient short time scale. Considering the drivers for commercialization potential of the technology, a reduction in after treatment system complexity by incr

54、eased engine after treatment integration is required to make the technology more feasible for large scal</p><p>  implementation. In addition, a sophisticated controls technology integration is absolutely

55、required considering the multi-mode combustion strategy employed and incorporating a urea reductant injection strategy and soot filter regeneration strategy in one control ECU fully integrated over the driving cycle. Thi

56、s is a significant hurdle left in the project development.</p><p>  There are infrastructure needs including low sulfur fuel below the 15 ppm level that is absolutely required, and also a urea reductant for

57、SCR. We believe that the urea reductant infrastructure will be led in the heavy-duty arena, which will lay a foundation from which the light duty infrastructure can then be subsequently developed. Significant concerns ar

58、e the measurement techniques and the emissions variability that are seen at the Tier 2 levels. The effective aging and device variability on </p><p>  Finally, the integrated analytical and experimental test

59、 approach is valuable and absolutely required given the limited resources and these nearer-term, high-risk objectives. Fundamental aftertreatment kinetic data is also a key need, pacing the applications of these tools an

60、d methodologies and especially pacing the integration of engine and aftertreatment technology. Hence, the species at the inlet of the aftertreatment devices over the transient is critical to ultimately integrating these

61、devi</p><p>  ACKNOWLEDGMENTS</p><p>  We would like to acknowledge the support received from the Office of FreedomCar Vehicle Technologies, John Fairbanks, Program Manager of DDC's Light Tr

62、uck Program and Ken Howden, Program Manager of DDC's Aftertreatment Program.</p><p>  REFERENCES</p><p>  EIA Annual Energy Outlook 2000, DOE/EIA-0383 (2000), December 1999.</p><p

63、>  Transportation Energy Data Book: Edition 19, DOE/ORNL-6958, September 1999.</p><p>  Hakim, N., Freese, C., and Miller, S., “The Detroit Diesel DELTA Engine for Light Trucks and Sport Utility Vehicles

64、– Year 2000 Update”, SAE Paper 2000-1-2197, SAE Government/Industry Meeting, Washington, DC, June 2000.</p><p>  Hakim, N., and Bolton, B., SAE Paper 2001-01-2062, “The Detroit Diesel DELTA Engine – Recent

65、Technological Achievements”, 2001 SAE Government/Industry Meeting, Washington, DC, May 2001.</p><p>  Aneja, R., Bolton, B., Hakim, N., and Pavlova-MacKinnon, Z., “Attaining Tier 2 Emissions Through Diesel E

66、ngine and Aftertreatment Integration - Strategy and Experimental Results”, 8th Diesel Engine Emissions Reduction (DEER) Workshop, Coronado, California, August 2002.</p><p>  Zhang, H. and Bolton, B., “Applic

67、ation of Advanced Emission Control Sub-System to State-of-the-Art Diesel Engine,” Combustion and Emission Control for Advanced CIDI Engines, 2000 Annual Progress Report, U.S. Department of Energy, November 2000.</p>

68、;<p>  Zhang, H., “Demonstration of Integrated NOx and PM Emissions for Advanced CIDI Engines,” Combustion and Emission Control for Advanced CIDI Engines, 2001 Annual Progress Report, U.S. Department of Energy, No

69、vember 2001.</p><p>  Bolton, B., Hakim, N. and Zhang, H., “Demonstration of Integrated NOx and PM Emissions for Advanced CIDI Engines”, Combustion and Emission Control for Advanced CIDI Engines, 2001 Annual

70、 Progress Report, U.S. Department of Energy, November 2002.</p><p>  柴油機(jī)引擎發(fā)展和耐久性</p><p>  先進(jìn)的柴油發(fā)動(dòng)機(jī)和后處理技術(shù)的發(fā)展,第2級(jí)排放。</p><p>  Rakesh Aneja 底特律柴油機(jī)公司</p><p>  Brian Bolton

71、 底特律柴油機(jī)公司</p><p>  Adedejo Bukky Oladipo 底特律柴油機(jī)公司</p><p>  Zornitza Pavlova MacKinnon, 底特律柴油機(jī)公司</p><p>  Amr Radwan 底特律柴油機(jī)公司</p><p><b>  【摘要】</b></p

72、><p>  先進(jìn)的柴油發(fā)動(dòng)機(jī)和后處理技術(shù)已經(jīng)開(kāi)發(fā)出來(lái),用于多種發(fā)動(dòng)機(jī)和車輛平臺(tái)。第2級(jí)( 2007年及以后)的排放水平已證明了輕型貨車車輛超過(guò)FTP協(xié)議的75個(gè)試驗(yàn)周期對(duì)車輛底盤(pán)式功率機(jī)。柴油發(fā)動(dòng)機(jī)在得到了這些低尾氣排放水平的 同時(shí)又保留了燃油經(jīng)濟(jì)性的優(yōu)勢(shì)特點(diǎn)。</p><p>  通過(guò)將原型后處理系統(tǒng)與先進(jìn)的燃燒方式(潔凈燃燒)結(jié)合,性能和排放取得了不少成果。潔凈燃燒在綜合處理之后控制部分

73、種類廢氣,同時(shí)達(dá)到氮氧化物和PM降低的目的。啟用引擎的分析工具能夠使子系統(tǒng)發(fā)展和系統(tǒng)整合。實(shí)驗(yàn)技術(shù)的開(kāi)發(fā)方法,利用各種設(shè)施,以簡(jiǎn)化開(kāi)發(fā)的最終解決方案,包括利用穩(wěn)態(tài)和暫態(tài)機(jī)的測(cè)試床,模擬底盤(pán)機(jī)的測(cè)試周期。</p><p>  【關(guān)鍵詞】:柴油發(fā)動(dòng)機(jī),第2級(jí),可控硅,后處理,排放,燃燒</p><p><b>  【導(dǎo)言】</b></p><p>

74、  在20世紀(jì)90年代后期,燃料的使用規(guī)劃已對(duì)未來(lái)的運(yùn)輸要求作好準(zhǔn)備。展望未來(lái),從2000至2020年汽車能源的使用是相對(duì)穩(wěn)定的,而第三至第八類卡車(重型機(jī)器類型車輛)卻被認(rèn)為在這20年時(shí)間里將有微弱的增長(zhǎng)。然而,一個(gè)顯著的上升主要出現(xiàn)在第1類至第2類車(皮卡,面包車和多功能車)。在某些情況下,這些都是用在商業(yè)上,但是增加的主要的來(lái)源被視為是客車市場(chǎng)用于個(gè)人的運(yùn)輸?shù)娜找嬖鲩L(zhǎng)的一部分。汽車使用的增加后來(lái)將主要增加能源的使用,從而帶動(dòng)每天數(shù)

75、百萬(wàn)桶的原油消費(fèi),從20世紀(jì)90年代后期的大約800萬(wàn)桶增加至2020年的12.5-13萬(wàn)桶[ 1,2 ]。</p><p>  有人預(yù)測(cè),到那時(shí),汽車的柴油機(jī)使用率,開(kāi)始主要是第一類及第二類輕型卡車的柴油機(jī)使用率在美國(guó)的交通能源的使用中將有顯著的減少。 不過(guò),很多人質(zhì)疑柴油發(fā)動(dòng)機(jī)實(shí)行次級(jí)排放的能力是否會(huì)影響其可行性。而那些認(rèn)為可以掃除排放的障礙的人又質(zhì)疑所有的氮氧化物減排技術(shù)應(yīng)用和燃油效率降低之后,燃料經(jīng)濟(jì)的改

76、進(jìn)將是怎樣。</p><p>  為應(yīng)對(duì)這個(gè)問(wèn)題,一系列的同能源部的合作項(xiàng)目已經(jīng)開(kāi)展,包括三角洲計(jì)劃以及后來(lái)的底特律柴油公司的“領(lǐng)導(dǎo)者”計(jì)劃。這些計(jì)劃的目的是研究達(dá)到次級(jí)排放標(biāo)準(zhǔn)的技術(shù)可行性以及對(duì)燃料經(jīng)濟(jì)性可能產(chǎn)生的影響。底特律柴油公司所采用的方案是一套綜合分析和應(yīng)用的方案,該方案利用這個(gè)項(xiàng)目早期階段的模擬來(lái)發(fā)展發(fā)動(dòng)機(jī)設(shè)計(jì)和策略發(fā)展需要的觀念。</p><p>  圖1 : "柴

77、油"的汽車的使用,使美國(guó)運(yùn)輸能源使用顯著減少。</p><p><b>  方法及結(jié)果</b></p><p>  控制系統(tǒng)與引擎控制系統(tǒng)用適中有效的方法綜合在一起,這種方法使得在保持柴油機(jī)對(duì)汽油機(jī)固有的經(jīng)濟(jì)優(yōu)勢(shì)的同時(shí),發(fā)動(dòng)機(jī)的總體排放特性也有明顯的提升。最初,廣泛的仿真指引著人們?nèi)ピO(shè)計(jì)一個(gè)清潔的單缸引擎。這個(gè)模型,以實(shí)際設(shè)計(jì)和生產(chǎn)的發(fā)動(dòng)機(jī)以及做好穩(wěn)定狀態(tài)模

78、態(tài)的發(fā)展得到了驗(yàn)證。這方面的努力使該模型變得適用并且使得在穩(wěn)定模式下的工作有質(zhì)量保證。一旦這種實(shí)驗(yàn)得到校準(zhǔn)和完善,引擎工況水平穩(wěn)定,它將被用于預(yù)測(cè)瞬時(shí)的引擎工作性能,又仍處在穩(wěn)定狀態(tài)類型中。與分析的工具結(jié)合在高度被控制的一種穩(wěn)定的狀態(tài)測(cè)試,然后再在一個(gè)穩(wěn)定狀態(tài)中測(cè)試運(yùn)行。這就回答了如何在空氣系統(tǒng),EGR系統(tǒng)和提高發(fā)動(dòng)機(jī)性能的燃燒系統(tǒng)間找到平衡的問(wèn)題。 </p><p>  伴隨穩(wěn)定狀態(tài)的發(fā)展,這些工作和理論被暫態(tài)

79、發(fā)動(dòng)機(jī)測(cè)功計(jì)驗(yàn)證,這個(gè)測(cè)功機(jī)位于發(fā)動(dòng)機(jī)能夠進(jìn)行暫態(tài)發(fā)動(dòng)機(jī)類型工作的位置。同時(shí),車輛綜合在預(yù)報(bào)和車輛噴射類型的的推動(dòng)的周期,諸如聯(lián)邦城市的驅(qū)車周期,F(xiàn)TP-75,US06,而公路燃料經(jīng)濟(jì)測(cè)試方式被編入瞬時(shí)的引擎測(cè)力計(jì)。這些可以在一個(gè)非常控制設(shè)置下運(yùn)行,從而允許為控制系統(tǒng)和校準(zhǔn)得到改進(jìn)。</p><p>  伴隨著馬力測(cè)力計(jì)系統(tǒng)的發(fā)展,發(fā)動(dòng)機(jī)被用來(lái)帶動(dòng)一系列商用輕型卡車:道奇杜蘭戈,道奇Dakota ,也是世界第1類

80、戴姆勒克萊斯勒霓虹客車車輛,并且部分驗(yàn)證控制系統(tǒng)發(fā)展校準(zhǔn)已制定。這種車輛綜合后,再往回到仿真領(lǐng)域中發(fā)展高保真控制系統(tǒng)和校準(zhǔn)發(fā)展。這是一條線索,通過(guò)一個(gè)迭代網(wǎng)絡(luò)的發(fā)動(dòng)機(jī)和后處理的發(fā)展。至于第二,第三和第四次迭代,通過(guò)這樣的循環(huán),后處理日益一體化。</p><p>  圖2 :達(dá)科他輕型卡車平臺(tái)</p><p>  如圖2所示,該平臺(tái)也可用于該計(jì)劃中,為第2級(jí)示范的是戴姆勒克萊斯勒道奇Dako

81、ta輕型卡車平臺(tái)。搭載的是一臺(tái)加強(qiáng)4升V6發(fā)動(dòng)機(jī)[ 3,4 ] 。這種發(fā)動(dòng)機(jī)采用可變幾何渦輪充電時(shí),共軌燃油噴射,獨(dú)特的高壓力回路,冷卻EGR系統(tǒng),創(chuàng)造了235馬力, 4000 rpm優(yōu)越性能表現(xiàn),并在2002年展示,,并參加了2002年在圣迭戈的乘坐和駕駛展示。在項(xiàng)目早期,一個(gè)綜合性的減排路線被開(kāi)發(fā)為輕型卡車和SUV的平臺(tái),如圖3所示。它是基于與FTP - 75廢氣排放性,并它在兩個(gè)領(lǐng)域得以體現(xiàn)。第一個(gè)領(lǐng)域是利用清潔燃燒的引擎控制策略

82、和進(jìn)步來(lái)確認(rèn)發(fā)動(dòng)機(jī)的排放。這個(gè)項(xiàng)目專利性和先進(jìn)性的燃燒技術(shù)在顯著減少發(fā)動(dòng)機(jī)排放的同時(shí),對(duì)燃油經(jīng)濟(jì)性沒(méi)有重大的影響,事實(shí)上,對(duì)瞬態(tài)燃油經(jīng)濟(jì)性沒(méi)有任何切實(shí)的影響。</p><p>  圖3 :輕型卡車/越野車平臺(tái)綜合排放削減路線 </p><p>  一旦這個(gè)發(fā)動(dòng)機(jī)外排放是既定的,那么第二個(gè)目標(biāo)就確定了:排氣管排放通過(guò)后處理顯示這個(gè)先進(jìn)發(fā)動(dòng)機(jī)控制策略的綜合性。發(fā)動(dòng)機(jī)外排放的目標(biāo)是在第2級(jí)10個(gè)

83、等級(jí),然后逐年下降非常接近第2級(jí)的9級(jí)水平,這是有針對(duì)性的,其最終目標(biāo)是達(dá)到2級(jí)的5級(jí)的最終的目標(biāo)。</p><p>  在2002DEER會(huì)議,初步的結(jié)果被顯示發(fā)動(dòng)機(jī)在第2級(jí)的10水平且沒(méi)有后處理[5]的外排放 。這有重要意義,因?yàn)樗谌〉昧朔浅5偷陌l(fā)動(dòng)機(jī)排放的同時(shí)保持了非常高的燃油經(jīng)濟(jì)性,比以汽油機(jī)作動(dòng)力的車高出50%。加入催化的煙塵過(guò)濾器,尿素為基礎(chǔ)的可控硅技術(shù)和相關(guān)的管制措施,氮氧化物和粉塵減少,并且在F

84、TP-75無(wú)任何氨滑移的情況下實(shí)現(xiàn)第2級(jí)6水平的排放。同汽油機(jī)相比,這種排放效益要高45%。</p><p>  自2002年DEER會(huì)議以來(lái),發(fā)動(dòng)機(jī)外排放有了很大的提高,如圖4所示。非常接近第2級(jí)9水平的排放,在沒(méi)有活躍的氮氧化物后處理情況下實(shí)現(xiàn)。氮氧化物的? 0.3克每英里很低的微粒。這超過(guò)了在初期階段的計(jì)劃路線確立的目標(biāo)。通過(guò)把以尿素為基礎(chǔ)的SCR技術(shù)添加到發(fā)動(dòng)機(jī)中,F(xiàn)TP-75實(shí)現(xiàn)了第2類第3級(jí)排放 ,同

85、時(shí)與汽油機(jī)相比,燃油效益高出40%。再次,這些排放水平是在FPT-5周期無(wú)任何氨滑移的情況下取得的。此外, US06水平也是第2級(jí)排放水平在利用催化的煙塵過(guò)濾器和以尿素為基礎(chǔ)的SCR技術(shù)的情況下取得的。</p><p>  圖4 : NOx還原經(jīng)燃燒和后處理發(fā)展輕型卡車/越野車平臺(tái)</p><p>  用以顯示這項(xiàng)先進(jìn)技術(shù)的好處的一種方法是將氮氧化物減少原因的歸類,可分為由于燃燒或者發(fā)動(dòng)機(jī)

86、不同,以及通過(guò)比較FTP-75汽車的外氮氧化物排放量和FTP-75發(fā)動(dòng)機(jī)的外排放量對(duì)后處理綜合性能的影響。在FTP-75放入循環(huán)中,后處理效率通常在80%-95%。對(duì)于低溫的FTP-75循環(huán)來(lái)說(shuō),這些是相當(dāng)高水平的氮氧化物減少量。這個(gè)項(xiàng)目顯示,去年,通過(guò)進(jìn)一步利用清潔燃燒技術(shù),提升檢查和控制策略,發(fā)動(dòng)機(jī)氮氧化物外排量有了顯著的降低。發(fā)動(dòng)機(jī)氮氧化物外排量減少了一半以上。而且,F(xiàn)TP-75循環(huán)氮氧化物排放減少技術(shù)有意義的提高表現(xiàn)在從去年的8

87、5%上升到今年的90%。這是通過(guò)充分開(kāi)發(fā)控制系統(tǒng)和先進(jìn)的復(fù)合模式燃燒的潛能實(shí)現(xiàn)的。這些充分表現(xiàn)了先進(jìn)的發(fā)動(dòng)機(jī)和后處理綜合技術(shù),這些是這些技術(shù)和項(xiàng)目?jī)?nèi)在的要求,尤其當(dāng)你考慮從模擬反復(fù)開(kāi)始,經(jīng)過(guò)穩(wěn)態(tài),瞬態(tài)發(fā)動(dòng)機(jī),最終到達(dá)汽車使用階段。我們經(jīng)歷的那種循環(huán)越多,我們就越能通過(guò)發(fā)動(dòng)機(jī)設(shè)計(jì),發(fā)動(dòng)機(jī)控制和先進(jìn)的潛能將后處理與發(fā)動(dòng)機(jī)結(jié)合。</p><p>  圖5 : NOx還原經(jīng)燃燒和后處理的發(fā)展輕型卡車/越野車平臺(tái)</

88、p><p>  而實(shí)現(xiàn)第二級(jí),尤其當(dāng)破壞傳統(tǒng)的NOx折衷方案曲線時(shí),找出這種氮氧化物權(quán)衡曲線仍然停留在上述每個(gè)單獨(dú)的轉(zhuǎn)折點(diǎn)顯得很重要。氮氧化物/燃油經(jīng)濟(jì)性權(quán)衡曲線仍然以同樣的方式存在。我們可以在曲線上標(biāo)出氮氧化物從7級(jí)到3級(jí)的變化情況,以顯示出:當(dāng)?shù)趸餃p少時(shí)FTP-75的燃油經(jīng)濟(jì)性也減少到同樣的水平。內(nèi)在的燃油經(jīng)濟(jì)復(fù)蘇潛力的確認(rèn)是很重要的。在發(fā)展思路的每一步,燃油經(jīng)濟(jì)性下降的原因都被確認(rèn),并且記錄在下面的循環(huán)中。

89、</p><p>  因此,對(duì)于2002年第2級(jí)6級(jí)水平,F(xiàn)TP - 75 的燃油經(jīng)濟(jì)性為:輕型卡車每加侖行駛20英里。在2003年,雖然我們有燃油經(jīng)濟(jì)性和氮氧化物的綜合,但我們現(xiàn)在可以在沒(méi)加侖同樣里程數(shù)的情況下達(dá)到第2類第5級(jí)的水平。這表明在同樣的燃油經(jīng)濟(jì)性條件下,氮氧化物的排放量比以前減少了55%。反過(guò)來(lái)說(shuō),如果我們保持相同的氮氧化物,以2003年確定的排放標(biāo)準(zhǔn),燃油經(jīng)濟(jì)性可以增長(zhǎng)到?jīng)]加侖行駛20.5英里?;?/p>

90、者,我們可以將氮氧化物的排放量有效的減少到第2類第3級(jí)標(biāo)準(zhǔn),這相當(dāng)于在燃油經(jīng)濟(jì)性減少最少的基礎(chǔ)上將氮氧化物排放量減少了70%以上。有這樣一個(gè)信息:經(jīng)過(guò)發(fā)動(dòng)機(jī)不斷的發(fā)展,燃油經(jīng)濟(jì)性不斷的提高,因此進(jìn)一步減少氮氧化物的排放量不會(huì)對(duì)燃油經(jīng)濟(jì)性產(chǎn)生多大不利的影響。如果我們把乘用車平臺(tái)作比較,這些結(jié)果可以被進(jìn)一步說(shuō)明,前面的結(jié)果已經(jīng)有所呈現(xiàn)。我們有和輕卡相類似的路線圖,區(qū)分兩種體制:一種是發(fā)動(dòng)機(jī)具有氮氧化物外排和FTP-75粉末的,另一種是與瞄準(zhǔn)

91、第2類第5級(jí)的后處理系統(tǒng)相結(jié)合的。在這種情況下,發(fā)動(dòng)機(jī)外輪廓在沒(méi)有后處理的情況下被提煉到一個(gè)更加清潔的水平:氮氧化物0.4g/mi和0.5g/mi。通過(guò)一個(gè)煙塵催化過(guò)</p><p>  這個(gè)項(xiàng)目顯示了燃油經(jīng)濟(jì)性隨著發(fā)展思路的提升而產(chǎn)生的重大進(jìn)步,同時(shí)在燃油經(jīng)濟(jì)性不受損害的情況下氮氧化物排放量有初步降低。第2類第5級(jí)結(jié)果是在67mpg的混合經(jīng)濟(jì),這是FTP-75和高速路燃油經(jīng)濟(jì)的結(jié)合。這清晰的顯示出當(dāng)利用合成分析

92、和實(shí)驗(yàn)方法時(shí),燃油經(jīng)濟(jì)如何得以提高。</p><p>  圖6 :客運(yùn)車平臺(tái)的綜合排放削減路線</p><p><b>  總結(jié)和結(jié)論</b></p><p>  總之,這個(gè)項(xiàng)目利用綜合柴油機(jī)和具有含SCR系統(tǒng)的催化過(guò)濾器后處理及技術(shù)來(lái)說(shuō)明輕卡SUV和乘用車平臺(tái)的第2類第3級(jí)排放。第2類用來(lái)說(shuō)明超過(guò)US06循環(huán)的輕卡平臺(tái)和FTP-75結(jié)果。用同

93、樣的汽車做測(cè)試,這比輕型汽油機(jī)卡車高出41%的燃油經(jīng)濟(jì)性。排放量的減少首先歸功于先進(jìn)的燃燒技術(shù),并且通過(guò)在沒(méi)有活躍的氮氧化物后處理的情況下實(shí)現(xiàn)第9級(jí)氮氧化物排放和PM水平實(shí)現(xiàn)的。尿素噴射控制策略是取得良好排放的首要原因,它在最大程度減小氨滑移的同時(shí)最大程度的減小了氮氧化物排放量。</p><p>  同時(shí),概括地說(shuō),強(qiáng)調(diào)綜合測(cè)試和分析的發(fā)展策略是短時(shí)間內(nèi)輕卡和乘用車實(shí)現(xiàn)第2類第3級(jí)排放的核心原因??紤]到司機(jī)們都看

94、重一項(xiàng)技術(shù)的商業(yè)潛能,要過(guò)發(fā)動(dòng)機(jī)后處理綜合來(lái)降低后處理系統(tǒng)的復(fù)雜性就必須使這項(xiàng)技術(shù)有更大范圍的實(shí)用性??紤]到復(fù)合模式的燃燒策略,并且把尿素還原劑噴射策略和過(guò)濾器換代策略融合在一個(gè)ECU中,我們需要精密的控制技術(shù)。這是該項(xiàng)目發(fā)展的一個(gè)重大障礙。。</p><p>  我們需要一些諸如在15PPM水平以下的必需的低硫燃料和SCR尿素還原劑。我們相信尿素還原劑將被用于重工作領(lǐng)域,而這又將為輕工作的發(fā)展奠定基礎(chǔ)。測(cè)量技術(shù)

95、和第2類水平的排放多樣性是需要重點(diǎn)考慮的。后處理的有效壽命和設(shè)備多樣性,以及這兩者的結(jié)合在預(yù)言長(zhǎng)期排放中起著重要作用。處理低排放發(fā)動(dòng)機(jī)的結(jié)果時(shí)數(shù)據(jù)分析是很必要的。</p><p>  最后,由于資源有限,短期性和高風(fēng)險(xiǎn),綜合分析和實(shí)驗(yàn)方法是很有用,也是絕對(duì)必要的?;A(chǔ)的動(dòng)力數(shù)據(jù)也是很關(guān)鍵的,因?yàn)樗鼘⑦@些工具與理論結(jié)合,并且將發(fā)動(dòng)機(jī)與后處理技術(shù)結(jié)合。因此,暫態(tài)時(shí)的后處理設(shè)備對(duì)整合設(shè)備和進(jìn)一步簡(jiǎn)化它們起著重要作用。&

96、lt;/p><p><b>  認(rèn)知</b></p><p>  我們真誠(chéng)地感謝FreedomCar汽車技術(shù)辦公室,以及DDC輕卡項(xiàng)目主任John Fairbanks和DDC后處理項(xiàng)目主任Ken Howden的支持。</p><p><b>  【參考文獻(xiàn)】</b></p><p>  1 。環(huán)評(píng)年度能

97、源展望2000年, doe/eia-0383 ( 2000 ) , 1999年12月。</p><p>  2 。運(yùn)輸能源資料書(shū): 19版, doe/ornl-6958 , 1999年9月。</p><p>  3 。哈基姆, 12月31日,弗里茲,丙,和米勒,美國(guó), "底特律柴油發(fā)動(dòng)機(jī)三角洲為輕型卡車和運(yùn)動(dòng)休旅車-到2 000年更新" , S AE的文件2 000-1

98、-2197, S AE的政府/工業(yè)界會(huì)議上,華盛頓哥倫比亞特區(qū), 2000年6月。</p><p>  4 。哈基姆, 12月31日,和博爾頓,乙, SAE的文件2001-01-2062 " ,底特律柴油發(fā)動(dòng)機(jī)三角洲-最新的科技成就" , 2 001年的S AE政府/工業(yè)會(huì)議上,華盛頓特區(qū), 2 001年5月。</p><p>  5 。阿尼婭,傳譯,博爾頓,乙,哈基姆

99、, 12月31日,帕夫洛娃-輕松種" ,達(dá)到2級(jí)排放柴油機(jī)和后處理一體化-戰(zhàn)略與實(shí)驗(yàn)結(jié)果" ,第8次柴油機(jī)排放量減少(鹿)車間,加利福尼亞 州科羅納多, 2002年8月。</p><p>  6 。Zhang, H. and Bolton,,是采用先進(jìn)的廢氣排放控制系統(tǒng),以先進(jìn)的技術(shù)設(shè)備先進(jìn)的柴油發(fā)動(dòng)機(jī), "燃燒與排放控制先進(jìn)cidi引擎, 2000年的年度進(jìn)展報(bào)告,美國(guó)能源部,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論