電氣類外文翻譯---2mw風(fēng)力雙饋異步電動機(jī)的研究設(shè)計_第1頁
已閱讀1頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  外文原文</b></p><p>  Design Study of Doubly-Fed Induction Generators</p><p>  for a 2MW Wind Turbine</p><p><b>  ABSTRACT</b></p><p>

2、  A design study for a 2 MW commercial wind turbine is presented to illustrate two connection methods for a standard doubly-fed induction machine which can extend the low speed range down to 80% slip without an increase

3、in the rating of the power electronic converter. This far exceeds the normal 30% lower limit. The low speed connection is known as induction generator mode and the machine is operated with a short circuited stator windin

4、g with all power flow being through the rotor circuit. A two l</p><p>  Keywords: Doubly-fed, Induction generator, Wind turbine</p><p>  LIST OF IMPORTANT SYMBOLS</p><p>  vrdq

5、 Direct and quadrature rotor voltage</p><p>  irdq Direct and quadrature rotor current</p><p>  λsdq Direct and quadrature stator flux lin

6、kage</p><p>  Ps Stator real power</p><p>  Qs Stator reactive power</p><p>  pfs Stator power factor</p>&l

7、t;p>  Te Torque</p><p>  p Differential operator</p><p>  Lm Magnetising reactance</p><p>  Rr Rot

8、or resistance</p><p>  Lr Rotor reactance</p><p>  σ Total leakage inductance</p><p>  ωsf Slip frequency</p><p>

9、  ‘s’ Stator referred</p><p>  ‘s’ Rotor referred</p><p>  ‘*’ Reference value</p><p>  1. INTRODUCTION</p><p>  There is cont

10、inuing interest in wind turbines, especially those with a rated power of many megawatts.This popularity is largely driven by both environmental concerns and also the availability of fossil fuels. Legislation to encourage

11、 the reduction of the so called carbon footprint is currently in place and so interest in renewables is currently high. Wind turbines are still viewed as a well established technology that has developed from fixed speed

12、wind turbines to the now popular variable speed</p><p>  The power – generator speed characteristic shown in figure 1 is fora commercial 2 MWwind turbine. The generator speed varies with wind speed however t

13、his relation is set for a specific location. As wind speed, and therefore machine speed, falls the power output of the generator reduces until the wind turbine is switched off when the power extracted from the wind is le

14、ss than the losses of the generator and converter. An operating mode has been proposed by a wind turbine manufacturer that is clai</p><p>  The reference torque required by both controllers (DF and IG mode)

15、can easily be derived from this curve. The torque – speed data can then be stored in a look-up table so the reference torque is automatically varied with speed.</p><p>  The capability of modern DF wind turb

16、ines to vary the reactive power absorbed or generated [6, 9, 10] allows a wind turbine to participate in the reactive power balance of the grid. The reactive power at the grid connection considered in this work is descri

17、bed, for the UK, by the Connection Conditions Section CC.6.3.2 [11] available from the National Grid. The reactive power requirement for a wind farm is defined by figure 2.</p><p>  Point A - MVAr equivalent

18、 for 0.95 leading power factor at rated MW</p><p>  Point B - MVAr equivalent for 0.95 lagging power factor at rated MW</p><p>  Point C - MVAr -5 % of rated MW</p><p>  Point D - M

19、VAr 5 % of rated MW</p><p>  Point E - MVAr -12 % of rated MW</p><p>  The objective of this paper is to investigate the controller performance of DF and IG mode for a 2MW, 690V, 4-pole DFIG usi

20、ng machine parameters provided by the manufacturer. This is further research building on a previous paper which demonstrated the steady-state performance of the two modes of operation, DF and IG mode [8]. In [8] the auth

21、ors discussed the steady-state efficiency for both connections. The steady-state performance work illustrated that there were benefits to operating the machi</p><p>  This paper examines the controllability

22、(i.e. transient performance) of the 2 MW wind turbine. Results of the full dynamic controller (current regulation, decoupling equations and vector control) in both DF mode and IG mode are shown. A detailed analysis of th

23、ecomponents that form the rotor voltage over the full operating range in DFIG mode is presented as this enables the dominant control components to be identified. This is particularly important when designing advanced con

24、trol schemes as an o</p><p>  2. CONNECTION METHODS</p><p>  Doubly-fed induction machines are commonly connected as shown in figure 3. The grid side inverter (GSI) is controlled to maintain a f

25、ixed dc link voltage with a given power factor at the grid (in our case unity). The rotor side inverter (RSI) is controlled so the maximum energy is extracted from the kinetic energy of the wind whilst enabling the stato

26、r power factor to be controlled within the limits of the grid requirements though unity power factor is often desirable.</p><p>  An alternative connection method for a doubly-fed machine is shown in figure

27、4, here called the induction generator (IG) connection. The stator is disconnected from the grid and is short-circuited. The rotor circuit is unchanged from figure 3. The GSI is controlled as in DF mode. The objective of

28、 the RSI is to control the stator flux linkage while extracting the maximum power from the kinetic wind energy.</p><p>  3. CONTROLLER PERFORMANCE</p><p>  A closed loop controller for both DF m

29、ode and IG mode has been discussed in prior work [12] but only for a 7.5 kW laboratory test rig. The dynamics of a 2 MW system are somewhat different and are investigated in this paper. The performance of the dynamic con

30、troller for both DF and IG mode are shown in this section for a 2 MW wind turbine.</p><p>  3.1. DFIG Mode (T and Q Control)</p><p>  The reference values for the controller in DF mode are torqu

31、e (see figure 1) and stator reactive power to enable the grid code requirement [11] to be achieved, figure 2. Two speeds are investigated in this section to enable the performance of the controller to be shown both above

32、 and below the 20% of rated power limit from the grid code requirements. A nominal generated power of 320 kW is achieved at 1150 rpm (less than 20% of rated power) and</p><p>  a nominal power of 1.25 MW is

33、achieved at 1550 rpm (greater than 20% of the rated power). The reference and actual torque, Te, and stator reactive power, Qs, are shown for both speeds</p><p>  in figure 5.</p><p>  The value

34、 of reference torque, Te*, for both speeds is the specific nominal torque for a given speed calculated from figure 1; ?2672 Nm for 1150 rpm and ?7701 Nm for 1550 rpm. A step of 200 Nm is applied at both speeds to illustr

35、ate the dynamic response to a step change in torque. The value of reference stator reactive power, Qs*, at 1150 rpm is varied between the limits specified by the grid code requirements; initially ?5% of the generated pow

36、er with a step at t=3.5s to +5% of the generated po</p><p>  The actual rotor current direct, irds, and quadrature, irqs, components corresponding to figure 5 are shown in figure6. The effect of the step cha

37、nge in Te* is apparent on the irqs (the superscript ‘s’ indicates that the variable is referred to the stator) as expected. The irqs* component at 1550 rpm contains small transient responses at t=3s and t=4s that are due

38、 to the step changes in the Qs value. The step change in Qs*, shown in figure 5, causes a fast change in irds*, figure 6, as there is </p><p>  3.2. IG Mode (T and Flux Control)</p><p>  The ref

39、erence values for the controller in IG mode are stator flux linkage and torque. Two conditions are investigated for the 2 MW generator in IG mode, start-up and torque step responses, at 400 rpm (minimum IG mode speed [12

40、]) and 1420 rpm (generated power at this speed corresponds to the upper power rating of rotor converter, 600 kW). The reference and actual torque, Te, and stator flux linkage, λsr (the superscript ‘r’ indicates that the

41、variable is referred to the rotor), for both speeds a</p><p>  The steady-state Te is the nominal value for the speed of operation, ?320 Nm for 400 rpm and ?4081 Nm for 1420 rpm derived from figure 1. A star

42、t-up sequence is required to establish the rated λsr in the machine, for a given speed, by means of a ramp, figure 7, before the machine can generate power.</p><p>  Once the controller reference λsr has bee

43、n established in the machine, the Te* is increased by means of a controlled ramp to the nominal value for a given speed and then a step response of 50 Nm step at 400 rpm and 200 Nm at 1420 rpm is applied. The controller

44、regulates the machine to track Te* as expected, see figure 7.</p><p>  The vector control loops determine the reference rotor current values that are shown in figure 8. The ird component initially increases

45、rapidly to establish the λsr and is approximately 3 times the nominal steady-state value for a given load point. The current is within the rated limit at all times. The initial ird can be significantly reduced if a slowe

46、r response of λsr is implemented.</p><p>  The irq component is regulated by the torque loop to enable the desired power to be generated. Initially there is a slight error due to the high ird which affects t

47、he quadrature loop by the cross coupling terms. Once nominal λsr is established in the machine the direct and quadrature loops are decoupled. Again a Te step causes a transient spike in irq* though the control is tuned t

48、o be slower than this change in reference value.</p><p>  4. CONTRIBUTION OF ROTOR VOLTAGE COMPONENTS</p><p>  The performance of both DF and IG mode has been illustrated in the previous section

49、. Both controllers are based on an inner current loop and an outer control loop for torque and stator reactive power in the DF case and torque and stator flux linkage in the IG case. Decoupling equations were then added

50、to the PI controller outputs to reduce the effect of cross coupling between the loops. The final part of this work studies the contribution of the steady state components of rotor voltage, given in</p><p>  

51、of the RSI.</p><p>  Figure 9 shows the variation of vrdqs for the speed and stator reactive power range investigated. The vrds component is dominated in the steady-state by the ?ωsfσirqs term as the voltage

52、 drop across Rrs is negligible and the λsq component is zero due to the choice of reference frame. This can be confirmed by comparing figure 9 with figures 11. The vrqs in a 2 MW machine is dominated by the ωsf(Lm/Ls)λsd

53、 term as the low total leakage inductance, σ, reduces the effect of the irds cross coupling te</p><p>  The steady-state variation in the direct, irds, and quadrature, irqs, rotor current components with res

54、pect to speed and Qs is shown in figure 10. The irds component regulates the stator power factor, pfs, by controlling Qs and the ird</p><p>  s component regulates Te. The value of irds determines the propor

55、tion of the generator reactive power supplied by the stator and rotor circuits. An increasingly positive irds increases the proportion of Q from the rotor circuit while decreasing the Q from the stator until Q is exporte

56、d by the stator. An increasingly negative irds increases the Q from the stator circuit, reducing the Q from the rotor side until Q is exported by the rotor. Qs increases with Te to maintain the desired pfs and so th</

57、p><p>  The remainder of this section illustrates the rotor voltage, vrdqs, steady-state components from eqns (1 and 2). The Rrsirds term in vrds and the Rrsirqs term in vrqs are simply irdqs, figure 10,scaled

58、by Rrs and so are not shown.</p><p>  The jσωsfirdqs cross coupling terms of vrdqs are shown in figure 11. The jσωsfirqs term contributes to vrds and σωsfirds forms part of vrqs. The σωsfirds component varie

59、s with both speed and stator reactive power as stator reactive power is proportional to torque for a given stator power factor. The σωsfirds component increases with speed as the load torque increases,figure 1. The ?σωsf

60、irqs component is the dominant term in the vrds component, eqn (1), at non-synchronous speeds; the polarity is </p><p>  5. DISCUSSION</p><p>  This analysis enables the vrds and vrqs components

61、 to be characterised by the dominant terms. The λs orientation frame results in the λsq feed forward term in vrds being negligible and so the steady state vrds component is a result of Rrsirds?σωsfirqs. Three distinct re

62、gions can then be identified, sub-synchronous speed (low irqs due to low load so vrds is approximately Rrsirds), about synchronous speed (ωsf is around 0 so vrds is approximately Rrsirds) and supersynchronous speed (irds

63、 and irqs </p><p>  The steady state vrqs component is dominated by the λsd term, confirmed by Hopfensperger et al [9] (with the exception of synchronous speed when the steady state vrqs is dependent on the

64、Rrsirqs term). The transient response of vrqs to an irqs* step is dominated by the pσirqs term as the differential of the step change in irqs is initially high.The p(Lm/Ls)λsq term has a negligible effect as λsq is appr

65、oximately zero. The vrds term and the steady-state terms in vrqs all experience a change in v</p><p>  6. CONCLUSIONS</p><p>  This paper has investigated the controller response for the DF and

66、IG mode connections for a 2 MW DFIG wind turbine. The machine parameters for the 2 MW machine were provided, for a commercially available WRIM used in wind turbines, by the manufacturer. The 2 MW machine parameters used

67、in this work are not simply a linear scaling of prior work on a 7.5 kW machine and so the characteristics are not identical between the two machines.</p><p>  Two areas of analysis have been investigated wit

68、h respect to the 2 MW DFIG. Existing simulation models have been used to evaluate the controllability and steady-state and transient behaviour of a 2 MW DFIG in DF and IG mode. The outcome shows that IG mode is a control

69、lable mode of operation which will extend the low speed operation as rotor voltage decreases (as speed reduces) and so the voltage limit of the IGBTs will be respected as will the current and power limits of the machine

70、and converte</p><p>  ACKNOWLEDGEMENTS</p><p>  The authors are grateful to FKI Industrial Drives and the EPSRC for their support.</p><p>  REFERENCES</p><p>  1. Pena

71、R, Clare J and Asher GM. Doubly Fed Induction Generator using Back-to-Back PWM Converters and its Application to Variable-Speed Wind-Energy Generation. IEE Proceedings - Electric Power Applications May 1996; 143; 3; 231–

72、241.</p><p>  2. Kelber C and Schumacher W. Control of Doubly-Fed Induction Machines as an Adjustable Speed Motor/Generator, VSSHy 2000 - European Conference Variable Speed in Small Hydro.</p><p&g

73、t;  3. Ran L, Bumby JR and Tavner PJ. Use of Turbine Inertia for Power Smoothing of Wind Turbines with a DFIG. 11th International Conference on Harmonics and Quality of Power 2004; 106–111.</p><p>  4. M

74、2;ller S, Deicke M and De Doncker RW. Doubly fed induction generator systems for wind turbines. IEEE Industry Applications Magazine 2002; May/June; 26–33.</p><p>  5. Hansen AD, Iov F, Blaaberg F and Hansen

75、LH. Review of Contemporary Wind Turbine Concepts and their Market Penetration. Wind Engineering 2004; 28; 3; 247–263.</p><p>  6. Chengwu L and Fengxiang W and Yong T. Design and Implementation of A Doubly-

76、Fed VSCF Wind Power Control System. International Conference on Power System Technology: PowerCon 2002; 4; 2126–2129.</p><p>  7. Hofmann W. Optimal Reactive Power Splitting in Wind Power Plants Controlled b

77、y Double-Fed Induction Generator. IEEE AFRICON September 1999; 2; 943–948.</p><p>  8. Smith S, Todd R, Barnes M and Tavner PJ. Improved Energy Conversion for Doubly-Fed Wind Generators. IEEE Transactions o

78、n Industry Applications 2006; 42; 1421–1428.</p><p>  9. Hopfensperger B, Atkinson DJ and Lakin RA. Stator-Flux-Oriented Control of a Doubly- Fed Induction Machine With and Without Position Encoder. IEE Proc

79、eedings - Electric Power Applications July 2000; 147; 4; 241–250.</p><p>  10. Holdsworth L, Wu XG, Ekanayake JB and Jenkins N. Comparison of Fixed Speed and Doubly-Fed Induction Wind Turbines During Power S

80、ystem Disturbances. IEE Proceedings - Generation, Transmission and Distribution May 2003; 150; 3; 343–352.</p><p>  11. National Grid, Connection Conditions September 2005; Rev 12; Issue 3.</p><p&

81、gt;  12. Todd R, “High Power Wind Energy Conversion Systems,” Eng.D thesis, School of Electrical and Electronic Eng., Univ. of Manchester, UK, 2006.</p><p>  13. Park JW, Lee KW and Lee HJ. Control of Active

82、 Power in a Doubly-Fed Induction Generator Taking into Account the Rotor Side Apparent Power. 35th Annual IEEE Power Electronics Specialists Conference 2004; 2060–2064.</p><p><b>  外文翻譯</b></p

83、><p>  2MW風(fēng)力雙饋異步電動機(jī)的研究設(shè)計</p><p><b>  摘要</b></p><p>  一個設(shè)計為一個2 MW風(fēng)力發(fā)電機(jī)的商業(yè),驗證了兩種連接方式為標(biāo)準(zhǔn)雙饋異步機(jī)可延長低速下范圍到80%滑動沒有增加的額定功率電子變換器。這遠(yuǎn)遠(yuǎn)超出了正常的30%的下限。較低的速度連接被稱作異步發(fā)電機(jī)模式和機(jī)器操作與短路定子繞組和所有的功率流在

84、轉(zhuǎn)子回路。有兩個回路逆變器控制系統(tǒng)方案設(shè)計和調(diào)整為每一個模式。本文的目的是當(dāng)前仿真結(jié)果,說明了該控制器的動態(tài)性能均為雙饋異步發(fā)電機(jī)的連接方法為2 MW風(fēng)力渦輪機(jī)。一個簡單的分析了雙轉(zhuǎn)子電壓為連接方法包括作為這個演示的優(yōu)勢的時候,需要考慮設(shè)計等先進(jìn)控制策略。</p><p>  關(guān)鍵詞:雙饋電機(jī)、異步發(fā)電機(jī)、風(fēng)力發(fā)電設(shè)備</p><p><b>  列出的重要標(biāo)志</b>

85、;</p><p>  vrdq 直接和正交轉(zhuǎn)子電壓</p><p>  irdq 直接和正交轉(zhuǎn)子電流</p><p>  λsdq 直接和正交定子磁鏈</p><p>  Ps

86、 定子有功功率</p><p>  Qs 定子無功功率</p><p>  pfs 定子動力因素</p><p>  Te 扭矩</p><p>  p 微

87、分算子</p><p>  Lm 電抗引入</p><p>  Rr 轉(zhuǎn)子電阻</p><p>  Lr 轉(zhuǎn)子電抗引入</p><p>  σ 總漏電感<

88、/p><p>  ωsf 頻率</p><p>  ‘s’ 定子簡稱</p><p>  ‘s’ 轉(zhuǎn)子簡稱</p><p>  ‘*’ 參考值</p><p>&

89、lt;b>  1、介紹</b></p><p>  興趣是持續(xù)風(fēng)力渦輪機(jī),尤其是那些擁有一個額定功率的許多兆瓦這個流行主要由既環(huán)保,也可用的化石燃料。立法鼓勵減少碳足跡的所謂的地方,所以目前正在感興趣的可再生能源。風(fēng)力渦輪機(jī)仍然被看作是一種建立完善的技術(shù),已形成從定速風(fēng)力渦輪機(jī),現(xiàn)在流行的調(diào)速技術(shù)基于雙饋異步發(fā)電機(jī)(DFIGs)。風(fēng)力是一DFIG變速與轉(zhuǎn)子變頻器控制使轉(zhuǎn)子電壓相位和大小調(diào)整以保持

90、最佳扭矩和必要的定子功率因數(shù)文[1]~[3]。DFIG技術(shù)是目前發(fā)達(dá),是常用的風(fēng)力渦輪機(jī)。定子的DFIG是直接連接到網(wǎng)格與電力電子轉(zhuǎn)子變換器之間,用以轉(zhuǎn)子繞組的網(wǎng)格。這個變量速度范圍是成正比的評級的轉(zhuǎn)子等通過變頻器調(diào)速范圍±30%[4、5、6、7]轉(zhuǎn)子轉(zhuǎn)換器只需要的DFIG總量的30%的力量而使全面控制完整的發(fā)電機(jī)輸出功率。這可能導(dǎo)致顯著的成本節(jié)省了轉(zhuǎn)子轉(zhuǎn)換器[4]。滑動環(huán)連接,但必須保持轉(zhuǎn)子繞組,性能安全可靠。電源發(fā)電機(jī)速度

91、特性,如圖1所示為2 MWwind汽輪機(jī)。對于一個商業(yè)發(fā)電機(jī)速度隨風(fēng)速,然而這種關(guān)系是為某一特定地點(diǎn)。作為風(fēng)速,并因此機(jī)速度快、輸出功率下降了的風(fēng)力發(fā)電機(jī)減少直至關(guān)閉時提取風(fēng)是比損失的發(fā)電機(jī)和液力變矩器。操作模式已經(jīng)提出,風(fēng)</p><p>  這個能力的現(xiàn)代DF風(fēng)力渦輪機(jī)不同的無功功率吸收或產(chǎn)生[6、第九條、第十條]讓風(fēng)渦輪參與無功功率平衡的格子里。無功功率在電網(wǎng)的連接中描述的工作,由英國,連接條件小節(jié)CC.6

92、.3.2[11]從國家電網(wǎng)。無功要求風(fēng)電場的定義是由圖2。 </p><p>  MVAr點(diǎn)——相當(dāng)于功率因數(shù)為0.95領(lǐng)先于額定兆瓦</p><p>  MVAr B點(diǎn)——相當(dāng)于功率因數(shù)為0.95滯后于額定兆瓦</p><p>  C - MVAr 5點(diǎn)的額定兆瓦</p><p>  D點(diǎn)- MVAr 5%額定兆瓦</p>&

93、lt;p>  E - MVAr 12點(diǎn)的額定兆瓦</p><p>  摘要本文旨在探討控制器性能和IG模式為DF 2MW 690V,4-pole,DFIG使用機(jī)器參數(shù)由制造商。這是進(jìn)一步研究建立在先前的穩(wěn)態(tài)性能進(jìn)行了兩種操作的損耗,以及國際組模式[8]。在[8]探討了穩(wěn)態(tài)效率為雙方關(guān)系。工作說明的穩(wěn)態(tài)性能都有好處,這臺機(jī)器運(yùn)行一個連接方法相對于其他。摘要本文檢視(即瞬態(tài)性能)的2千瓦風(fēng)力渦輪。結(jié)果全部動態(tài)控

94、制器(電流調(diào)節(jié)、解耦控制方程和矢量控制方式,在DF)的方式顯示指定。配置程序做了詳細(xì)的分析,形成了轉(zhuǎn)子的電壓在整個操作范圍內(nèi)DFIG模式,給出了這種能夠主宰成分浮出水面。這是特別重要的先進(jìn)控制方案設(shè)計時充分概論的工作范圍內(nèi),能被確認(rèn)。仿真模型,它已經(jīng)被證實(shí)對7.5kW實(shí)驗室鉆機(jī)[12],是應(yīng)用于現(xiàn)實(shí)的2千瓦風(fēng)力使結(jié)論是關(guān)于擬議中的使用IG模式在真實(shí)的風(fēng)力渦輪。</p><p><b>  2、連接方法&

95、lt;/b></p><p>  雙饋異步電機(jī)通常連接如圖3。GSI網(wǎng)格側(cè)逆變器(保持)是一個固定的直流環(huán)節(jié)電壓與給定的功率因數(shù)的網(wǎng)格(在我們的情況下,團(tuán)結(jié))。轉(zhuǎn)子側(cè)逆變器(勞損)的控制,從而使最大能量提取的動能的風(fēng)而使定子功率因數(shù)控制范圍內(nèi)統(tǒng)一要求,盡管網(wǎng)格的功率因數(shù)往往是可取的。另一種連接方式為雙饋電機(jī)如圖4,這叫了異步發(fā)電機(jī)(指定)連接。定子是脫離電網(wǎng)和短路。轉(zhuǎn)子回路圖3。從不變。GSI一樣的控制方式

96、。DF)目的是為了控制勞損定子磁鏈在吸收最大功率的動能,風(fēng)能。</p><p><b>  3、控制器性能</b></p><p>  閉環(huán)控制方式都和IG模式DF討論的前期準(zhǔn)備工作[12]但只有一個7.5億千瓦實(shí)驗室試驗平臺。2千瓦動力學(xué)系統(tǒng)會有所不同,本文討論了。動態(tài)控制器的性能和IG模式為DF中顯示的是這段2 MW風(fēng)力渦輪機(jī)。</p><p&

97、gt;  3.1DFIG模式(T和Q控制)</p><p>  參考價值的扭矩模式控制器DF(見圖1)和定子無功使網(wǎng)格代碼要求達(dá)到[11],圖2。摘要研究了兩種速度,使部分的控制性能表現(xiàn)出兩上方和下方的標(biāo)稱功率的20%限制電網(wǎng)的規(guī)范要求。一個命名可以達(dá)到3億千瓦,約1150轉(zhuǎn)(小于標(biāo)稱功率的20%)</p><p>  一個額定功率是達(dá)到125千瓦1550轉(zhuǎn)(超過20%的額定功率)。參考和

98、實(shí)際的扭矩、網(wǎng)球、定子無功功率,Qs,都顯示,兩者的速度在圖5。</p><p>  參考扭矩,越富有,因為這兩者都是具體的名義轉(zhuǎn)矩速度對于一個給定的速度計算出圖1;?2672海里為1150轉(zhuǎn)速和?7701海里的1550轉(zhuǎn)速。200海里的速度在雙方的動態(tài)響應(yīng),說明了一步,改變扭矩。參考定子無功功率,Qs *,螺桿轉(zhuǎn)速變化之間的1150年所指定的范圍柵格規(guī)程的要求;最初?5%的生成與更進(jìn)了一步,在t = + 5%的

99、3.5s產(chǎn)生電力。在1550轉(zhuǎn)定子動力因素、pfs *,最初0.95并逐步改變在t = 3s團(tuán)結(jié)pfs和最后一步,在t = 0.95滯后4s pfs)。矢量控制回路的調(diào)整為一個時間常數(shù)的0.9s 0.1秒,為特和Qs循環(huán)。矢量控制的設(shè)計是為了有一個較慢的帶寬比當(dāng)前的規(guī)定。</p><p>  實(shí)際轉(zhuǎn)子電流直接、irds、正交、irqs、部件對應(yīng)figure6圖5中顯示。這個步驟的影響是明顯的變化對Te * irq

100、s(上標(biāo)s指出變量是指在定子)。這個irqs *元件包含小瞬態(tài)響應(yīng)1550 rpm在t =三分球和t = 4s是由于步改變Qs價值。這個步驟改變Qs *,如圖5,導(dǎo)致快速變化的irds *,圖6,如有初步的誤差和實(shí)際Qs作為參考一會兒,管理作為回應(yīng)?,F(xiàn)行規(guī)定,確保帶寬防止控制器對這樣的流動而不斷地獲得適當(dāng)?shù)姆磻?yīng)速度這個方程為基礎(chǔ)的調(diào)諧用來控制器的設(shè)計出相似的比例和積分所得的值為現(xiàn)行規(guī)定直接和正交循環(huán)的Holdsworth魏厚[10]。&

101、lt;/p><p>  3.2 IG模式(T和流量控制)</p><p>  參考價值的IG模式控制器是定子磁鏈和轉(zhuǎn)矩。摘要研究了兩種條件下2千瓦發(fā)電在IG模式中,啟動和扭矩步反應(yīng),以400轉(zhuǎn)(最低IG模式速度[12])和1420轉(zhuǎn)(所產(chǎn)生的力量以這樣的速度與轉(zhuǎn)子上游的額定功率轉(zhuǎn)換器,600億千瓦)。參考和實(shí)際的扭矩、網(wǎng)球、定子磁鏈,λsr(上標(biāo)' r”表明變量是指兩個方面對轉(zhuǎn)子)的速

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論