版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 附錄 外文翻譯</b></p><p> MIX DESIGN & PROPORTIONING</p><p> (一)MIX DESIGN</p><p> The concrete mix design (CMD) for QC/QA superstructure concrete must p
2、roduce a workable concrete mixture having properties that will not exceed the maximum and/or minimum values defined in the special provision. Workability in concrete defines its capacity to be placed, consolidated, and f
3、inished without harmful segregation or bleeding. Workability is affected by aggregate gradation, particle shape, proportioning of aggregate, amount and qualities of cementitious materials, presence of entrained</p>
4、<p> Consistency of the concrete mixture is its relative mobility and is measured in terms of slump. The higher the slump the more mobile the concrete, affecting the ease with which the concrete will flow during
5、placement. Consistency is not synonymous with workability. Two different mix designs may have the same slump; however, their workability may be different. </p><p> Selection of target parameters by the cont
6、ractor for any mix design must consider the influence of the following:</p><p> 1. material availability and economics</p><p> 2. variability of each material throughout period of usage</p&
7、gt;<p> 3. control capability of production plant</p><p> 4. ambient conditions expected at the time(s) of concrete placement</p><p> 5. logistics of concrete production, delivery, and
8、 placement</p><p> 6. variability in testing concrete properties</p><p> 7.generation of heat in large structural elements and differential in thermal gradient</p><p> The qualit
9、ies of the cementitious paste provide a primary influence on the properties of concrete. Proper selection of the cementitious content and water/cementitious ratio is dependent on the experience of the concrete producer a
10、nd becomes a very important first step in preparing a design. For workable concrete, a higher water cementitious ratio is typically required when aggregate becomes more angular and rough textured. The presence of air, ce
11、rtain pozzolans, and aggregate proportioning will </p><p> Water/cementitious ratio is determined from the net, per unit, quantity of water and total cementitious materials. The net water content excludes w
12、ater that is absorbed by the aggregates. For a given set of materials and conditions, as water/cementitious ratio increases, strength and unit weight will decrease. Compressive strength is a concrete parameter used in co
13、mbination with unit weight and air content to evaluate the durability of the superstructure concrete's exposure to freeze / thaw acti</p><p> Proportioning of aggregates is defined by the volume of fine
14、 aggregate to the volume of coarse aggregate, as a percent. The lower percentage of fine to total aggregate provides an increase in compressive strength at the expense of workability. The gradation, particle shape and te
15、xture of the coarse aggregate along with fineness modulus of the fine aggregate will determine how low the fine to total aggregate percentage can be for a given workability requirement.</p><p> (二)MIXING PR
16、OPORTIONING</p><p> Once the cement content, pozzolan content, water/cementitious ratio, and fine to total aggregate percentage are defined for the concrete's intended use in the superstructure, proport
17、ioning of the mix in terms of design batch weights can begin. Specific gravities must be accurately defined for each material being utilized in order to proportion the mix properly by the absolute volume method. Cement i
18、s typically accepted as having a specific gravity of 3.15. Pozzolans will typically vary between 2</p><p> Bulk specific gravity, in the saturated surface dry condition, must be used to proportion the fine
19、and coarse aggregate. Accurate testing of one or more samples of fine and coarse aggregate must be accomplished by the Contractor as part of any proportioning for a mix design. Subsequent shifts in benching at the aggreg
20、ate source may cause significant shifts in bulk specific gravity and absorption. These are important aggregate properties to monitor as part of concrete quality control.</p><p> Proportioning concrete by th
21、e absolute volume method involves calculating the volume of each ingredient and its contribution to making one y or 27 f of concrete. Volumes are subsequently converted to design weights, which then become the basis for
22、actual production of concrete from the plant. For cementitious materials and water, the weight to volume conversion is accomplished by dividing the weight (lbs) by the specific gravity of the material and again dividing
23、by the density of water. Convert</p><p> (三)LINEAR EQUATION OF UNIT WEIGHT vs. AIR CONTENT</p><p> It is known that the unit weight of plastic concrete is inversely proportional to air content
24、. That is to say, as air content increases unit weight decreases. This relationship becomes a very useful tool when evaluating plastic concrete. Unit weight and air content are properties of plastic concrete that can be
25、easily and quickly measured in the field. A unit weight measurement, at a known air content, that deviates excessively from the linear relationship provides information as to the possible</p><p> The linear
26、 equation to predict unit weight based on a given air content is presented below in directional form:</p><p> Where: m is the slope of line</p><p> Air is the plastic concrete air content (ind
27、ependent variable, xcoordinate</p><p> or abscissa of point)</p><p> b is the y-intercept</p><p> UW is the plastic concrete unit weight (dependent variable, ycoordinate,</p&g
28、t;<p> or ordinate of point)</p><p> If all points (Air, UW) associated with the solution set of this linear equation were plotted on a graph, there would be a straight line as illustrated by Figure
29、 3.1. This linear relationship can be determined for any concrete mix design.</p><p> ?。ㄋ模㏕HRESHOLD FOR MAXIMUM ALLOWABLE WATER / CEMENTITIOUS RATIO</p><p> Just as concrete unit weight is affe
30、cted by changes in air content, it is also affected by the amount of water that is available to react with cementitious materials. As the amount of water increases the water/cementitious ratio also increases, producing c
31、oncrete of inferior quality. This serves to lower the concrete unit weight at any given air content. Since the maximum allowable water/cementitious ratio for QC/QA superstructure concrete is 0.420, a threshold line or li
32、mit can be determined. T</p><p> There are several ways in which additional water could enter a concrete mix. The methodology presented in this chapter assumes that the increase in water/cementitious ratio
33、is due soley to excessive batch water. This provides a simple and accurate determination of the threshold limit equation. The methodology begins with the linear equation already established for the mix design. By establi
34、shing a single point below the linear equation, representing concrete with excessive water, the equation fo</p><p> ?。ㄎ澹㎝ix Design & Proportioning Worksheets</p><p> If at least two points
35、are known to be a solution to the equation, algebra can be utilized to solve for the two unknown variables (i.e. slope and y-intercept). The form in Appendix D (under tab 11) entitled "WORKSHEET FOR CMD LINEAR EQUAT
36、ION" provides the format in which two points can be defined and the equation determined.</p><p> The Cartesian coordinates of one solution point is already available from the mix design. We can define
37、this as Point 2 with coordinates (,). The value of is the target air content of the mix design (i.e. . The value of is the unit weight of the concrete stated in the mix design. This is determined by obtaining the summat
38、ion of the design batch weights and dividing by the summation of design</p><p> absolute volumes which will always be . The following example calculations for the worksheet are based on the mix design and p
39、roportioning values presented earlier in this chapter.</p><p><b> Example: </b></p><p> (rounded to the first decimal place)</p><p> A plot of the coordinates for Poi
40、nt 2 (, ) is illustrated in Figure 3.2. It is important to note that the unit weight for Point 2 is calculated to the nearest </p><p> Point 1, representing the y-intercept having coordinates (, ), must now
41、 be determined. This is accomplished by theoretically removing all the entrapped and entrained air from the mixture and calculating the concrete unit weight. The value of is 0.0 % air content. The value of is determine
42、d by again obtaining the summation of the design batch weights and divide by the summation of design absolute volumes except for entrapped or entrained air. This volume will always be . The following example i</p>
43、<p> calculates the coordinates for Point 1.</p><p><b> Example: </b></p><p> (rounded to the first decimal place)</p><p> The Cartesian coordinates of Point 1
44、, ( ), is graphed along with Point 2 in Figure 3.3, to illustrate the example. Again note that the unit weight is calculated to the nearest </p><p> It is important to remember that as air is removed from
45、concrete the individual weights of cementitious materials, fine aggregate, coarse aggregate, and water no longer represent amounts relative to of concrete. Concrete without the 6.5% target air content () would only yiel
46、d of concrete. The actual cement and water contents per concrete would increase as a result of the under yielding. If air content increases over the 6.5 % target, the actual cement and water contents per would be less
47、 as </p><p> From the x and y coordinates of Points 1 & 2, there is now enough information to solve for the variables of slope and y-intercept in the linear equation. The worksheet calculation for slope
48、, also known as "rise / run", is exemplified as follows:</p><p><b> Example:</b></p><p> (negative value, rounded to second decimal place)</p><p> It is imp
49、ortant to note that slope will always be negative since unit weight is inversely proportional to air content.</p><p> The y-intercept value (b) is simply the ordinate of Point 1, which has already been dete
50、rmined. In the example problem, the worksheet would show the solution b as follows:</p><p><b> Example:</b></p><p> The calculated and rounded values for slope and y-intercept can
51、now be inserted in the linear equation for the variables m and b, respectively. The linear equation can now be written for the concrete mix design. The numbers from the example result in the following:</p><p&g
52、t;<b> Example:</b></p><p> (六)DEPARTMENT CONCURRENCE OF MIX DESIGN</p><p> It is the responsibility of the Department's Project Engineer / Project Supervisor to conduct a comp
53、lete and thorough review of every mix design and proportioning for QC/QA Superstructure Concrete. There is a substantial amount of work that is based on the targets established by the CMD, not the least of which is the l
54、inear equation for the threshold limit that represents the maximum allowable water/cementitious ratio. This threshold limit is of critical importance in determining whether additio</p><p> The first step in
55、 proper review of a CMD is to verify that the materials are from current approved sources. The list of Approved and/or Prequalified Materials is to be used to verify approved sources of cement, fly ash, GGBFS, silica fum
56、e, chemical admixtures and air entraining agents. The fine and coarse aggregate ingredients of the concrete mix must be materials from an approved Certified Aggregate Producer. The gradation and quality requirement for t
57、he aggregates must also be verified, partic</p><p> In addition to the aggregates gradations the PE/PS must verify the bulk specific gravity (SSD) and absorption for the fine and coarse aggregate as being r
58、easonable for the source. If the Contractor's value for absorption differs by more than the multi labortory precision defined within the appropriate test method, the discrepancy will be investigated.</p><p
59、> The bulk specific gravity and absorption for aggregates are measured by the Department as part of the annual "Summary of Production Quality Results", and periodic Point-Of-Use samples. This data provides
60、the correct basis for comparison of absorption and specific gravity. Figures 3.5 and 3.6are graphs of bulk specific gravity (ssd) vs. absorption for a fine and coarse aggregate and are presented as examples of what histo
61、rical data might look like for specific products at an aggregate source.</p><p> Usually sources will demonstrate a trend of bulk specific gravity (SSD) being inversely proportional to absorption; however,
62、such may not always be the case. Figure 3.6 represents data from the INDOT Summary of Production Quality Results for a specific source of #8 coarse aggregate. The AP quality stone comes from ledges 1803, 1804, 19, &
63、20 processed as one working bench. These four ledges have thicknesses of 7.9 ft, 8.9 ft, 5.9 ft, and 12.1 ft, respectively. Since these ledges range in absorpt</p><p> It is important to understand that IND
64、OT historical records for bulk specific gravity (dry or SSD) from coarse aggregate sources are based on procedure 8.1 of AASHTO T 85. The Contractor must therefore test the coarse aggregate according to the same procedur
65、e even though the result is typically not appropriate for concrete mix design. If the mix design is submitted with enough advance notice, it becomes preferable for the Department to obtain a Point-Of-Use sample of the co
66、arse aggregate and tes</p><p> The air entraining and chemical admixtures that are approved for use are as stated in the special provision and the Approved/Prequalified Materials List referenced therein. It
67、 is important to recognize the limitations of Type F admixtures or HRWR Admixture Systems. These chemical admixtures have no retarding capability and would not be appropriate for superstructure concrete that is placed in
68、 conditions where concrete and ambient temperatures are above 65°F, and where dead load deflections are o</p><p> After verifying the materials as being approved for the concrete, the initial parameter
69、s for the Mix Design must be checked against the specification requirements. The remainder of the PE/PS check involves checking the math for proportioning, and the linear equations for the CMD and threshold limit. Use of
70、 the forms and worksheets by the contractor will provide the quickest and most complete review by the Department and therefore help eliminate unnecessary delays by recognizing problems early on</p><p><b&
71、gt; 混合物配合比設(shè)計(jì)</b></p><p><b> (一)混合物設(shè)計(jì) </b></p><p> 混凝土配合比設(shè)計(jì)混凝土質(zhì)量保證上層建筑(CMD)用于QC /QA必須出示有一個(gè)和易性好的混凝土混合物的性能,將不會(huì)超過最大和/或最低的特別規(guī)定定義的值。在具體的工作性定義它的的能力,放置,鞏固,無離析或泌水。可操作性是受骨料級(jí)配,顆粒形狀,配料總
72、量,數(shù)量和質(zhì)量的膠凝材料減速氣流,空氣的含量,高效減水劑的數(shù)量和質(zhì)量,及混和料的和易性。 </p><p> 混凝土混合物的和易性用相應(yīng)的流動(dòng)性,和坍落度衡量。坍落度越高,混凝土流動(dòng)性就越好,對(duì)混凝土將流動(dòng)過程中的具體位置影響更好。和易性和可操作性不等同。兩種不同的配合比設(shè)計(jì)可能有相同的坍落度,但其工作性能可能會(huì)有所不同。 </p><p> 目標(biāo)參數(shù)的選擇,承包商的任何配合比的設(shè)計(jì)必
73、須考慮下面的影響: </p><p> 1.材料供應(yīng)和經(jīng)濟(jì)狀況 </p><p> 2.在整個(gè)使用期間每一種材料的變化 </p><p> 3.生產(chǎn)廠的管理能力 </p><p> 4.預(yù)期在混凝土澆筑時(shí)的環(huán)境條件 </p><p> 5.混凝土產(chǎn)品的物流,配送與安置 </p><p>
74、; 6.在測(cè)試中混凝土性能變化</p><p> 7.熱產(chǎn)生在大型構(gòu)件和在熱梯度的差別。</p><p> 水泥粘貼性的質(zhì)量起到了對(duì)混凝土主要性能的影響。正確選擇水泥含量和水灰比依賴于生產(chǎn)的經(jīng)驗(yàn),準(zhǔn)備工作是完成一個(gè)非常重要的設(shè)計(jì)的第一步。對(duì)于和易性好的混凝土,水灰比較高的水時(shí),通常需要更多的角度和總體變得粗糙質(zhì)感的集料。 空氣的存在,一定的火山灰,集料配料凈漿降低水灰比;然而,最顯
75、著降低用水量求是通過使用一種高化學(xué)減水劑的外加劑。 </p><p> 水灰比由每單,水的重量和總膠凝材料重量決定。水凈含量不包括由集料所吸收的水量。對(duì)于一個(gè)給定的材料和條件,水灰比增大,強(qiáng)度和單位重量將減少??箟簭?qiáng)度是在單位重量和空氣含量具體的參數(shù)組合使用,以評(píng)估暴露結(jié)構(gòu)的耐久性混凝土的凍結(jié)/解凍的行為,以及接觸除冰鹽。 重要的是要注意到,在橋梁結(jié)構(gòu)設(shè)計(jì)不會(huì)增加抗壓強(qiáng)度。該板仍然依賴抗壓強(qiáng)度(f'c
76、)28天最低設(shè)計(jì)4000 psi。 </p><p> 集料配合比是指由細(xì)骨料量與粗骨料量,以百分比。損失可工作性下,低比例的集料總額合計(jì)使抗壓強(qiáng)度增加。級(jí)配,顆粒形狀和質(zhì)地優(yōu)良的總和粗骨料模量隨細(xì)度低,將決定如何將集料比例可以為一個(gè)給定的可操作性的要求。 </p><p><b> (二)混合配料 </b></p><p> 一旦水泥含
77、量,火山灰含量,水灰比,集料總額百分比意味著混凝土將用于上層建筑,就設(shè)計(jì)一批混凝土而言,配合比設(shè)計(jì)就可以開始了。具體的比重,必須準(zhǔn)確界定每個(gè)材料被利用,以絕對(duì)體積法的比例處理。 水泥是典型的被認(rèn)為為具有比重的3.15?;鹕交彝ǔT?.22和2.77之間各有不同, 火山灰供應(yīng)商應(yīng)隨時(shí)能夠?yàn)樗麄兲峁┑奈镔|(zhì)的當(dāng)前值。近似比重都確定了每個(gè)部門的批準(zhǔn)/資格預(yù)審材料清單源,但是,他們不應(yīng)該被認(rèn)為是最近的。 </p><p&g
78、t; 容重,在飽和表面干燥狀態(tài)下,必須使用一定比例的粗細(xì)骨料。準(zhǔn)確的測(cè)試一個(gè)或多個(gè)細(xì)和粗骨料樣品必須完成由承包商作為任何一個(gè)混合配料設(shè)計(jì)的一部分??傇搭^在隨后的變化可能導(dǎo)致在容重和吸收的重大變化。以監(jiān)測(cè)為總量控制混凝土質(zhì)量的一部分,這些都是重要的屬性。 </p><p> 混凝土配合比的方法涉及的絕對(duì)量計(jì)算的各成分含量及其對(duì)取決于1 yd3或27ft3的混凝土含量。其后體積轉(zhuǎn)換為設(shè)計(jì)重量,然后成為工廠的基礎(chǔ)
79、上生產(chǎn)的具體實(shí)際。對(duì)于膠凝材料和水,轉(zhuǎn)化為體積和重量完成的比重材料除以體重(磅)再除以水的密度。從體積重量轉(zhuǎn)換完成的,是僅僅通過已知的體積成分和乘以成份比重,并再次磅乘以水的密度之間。體積與重量都聚集轉(zhuǎn)換為計(jì)算完成的系列相同,但是,容重法(SSD)必須使用。 我們的目標(biāo)是建立空氣含量在6.5%的特別規(guī)定,它轉(zhuǎn)換為一個(gè)具體的量1.76ft3 </p><p> (三)單位重量空氣含量線性方程 </p>
80、;<p> 據(jù)了解,塑性混凝土的單位重量與空氣含量成反比的。這就是說,由于空氣含量的增加,單位重量下降。 這種關(guān)系成為評(píng)估塑性混凝土?xí)r一個(gè)非常有用的工具。單位重量和空氣含量的塑料混凝土,可以很容易地和迅速地在現(xiàn)場(chǎng)實(shí)測(cè)其性能。 一個(gè)單位重量的測(cè)量,在已知的空氣含量,即通過分偏離線性關(guān)系,提供有關(guān)信息,如耐久性、可操作性和強(qiáng)度,對(duì)可能出現(xiàn)的缺陷結(jié)構(gòu)和性能的潛在影響等。 </p><p> 線性方
81、程來預(yù)測(cè)單位重量的基礎(chǔ)上給定的空氣含量的形式如下: </p><p> UW = m (空氣) + b</p><p> 其中:M——直線的斜率</p><p> 空氣是塑性混凝土含氣量 </p><p><b> b——y軸截距 </b></p><p> UM——塑性混凝土的單位重量
82、</p><p> 如果所有的點(diǎn)的線性方程與此相關(guān)聯(lián)的解集分別繪于一圖,將有一條直線,由圖3.1所示。這種線性關(guān)系,可以決定對(duì)任何混凝土配合比設(shè)計(jì) </p><p> 解到,代數(shù)可以用來解決這兩個(gè)未知變量(即斜率和y軸截距)。在附錄D的形式(在選項(xiàng)卡11),題為“線性方程加利福尼亞的工作表”確定的格式提供,其中有兩點(diǎn)可以定義和公式。</p><p> 直角坐標(biāo)
83、(點(diǎn)空氣的一個(gè)解決方案,威斯康星大學(xué))已經(jīng)可以從結(jié)構(gòu)設(shè)計(jì)。我們可以定義為2點(diǎn)與點(diǎn)的坐標(biāo)(x2,y2)的。的x2= 6.5%的目標(biāo)空氣含量的配合比設(shè)計(jì)(即x2)的。在y2型價(jià)值是混合設(shè)計(jì)單位在規(guī)定的具體重量。這是由樓總結(jié)取得一批權(quán)重的設(shè)計(jì)絕對(duì)再除以總結(jié)了設(shè)計(jì)容量將永遠(yuǎn)是27.00 ,為工作表下面的例子計(jì)算的基礎(chǔ)上配合比設(shè)計(jì)及配比值本章前面介紹的這一點(diǎn)。 </p><p> ?。ㄋ模┧冶鹊呐R界值</p>
84、<p> 正如混凝土的單位重量是受空氣中含量的變化,也受水與膠凝材料反應(yīng)影響。 由于用水量增加了,水灰比也增加了,混凝土生產(chǎn)質(zhì)量下降。 這降低了在任何具體空氣含量下單位混凝土重量。由于最高允許水/用于QC / QA 上層建筑混凝土膠凝比例是0.420,臨界線或限度可確定。這個(gè)臨界線將與配合比設(shè)計(jì)線性方程平行;但是,單位重量將降低。 這極限值與質(zhì)量控制和進(jìn)料抽樣與測(cè)試有關(guān),以控制結(jié)果的質(zhì)量以及驗(yàn)收取樣和測(cè)試。如果測(cè)量單
85、位重量在任何特定的空氣含量等于或低于閾值,它可能表明,已超過最大水灰比。重要的是要明白,工程質(zhì)量控制中心關(guān)于為線性方程的生產(chǎn)配合比設(shè)計(jì)。 </p><p> 有幾種方法,使更多的水可以進(jìn)入混凝土混合料。本章提出的方法在此假定加的水灰比,完全是由于過量的水。這提供了一個(gè)簡單的準(zhǔn)確測(cè)定極限值的方程。 該方法首先假設(shè)的混合求解線性方程組已經(jīng)成立。 通過建立一個(gè)線性方程單點(diǎn)以下,占混凝土與水過多,限制方程的極值確定
86、。 最簡單的一點(diǎn)是選擇在y軸截距,其中混凝土并沒有夾雜空氣。這一點(diǎn)是指第3點(diǎn),有坐標(biāo)(x3, y3)。 該方程的臨界線與線性方程平行,斜率相同。知道了斜率和y軸截距的極限方程就可以完成。</p><p> ?。ㄎ澹┡浜媳仍O(shè)計(jì)及配料工作頁 </p><p> 如果至少有兩個(gè)點(diǎn),知道是一對(duì)方程的解,代數(shù)可用來解決這兩個(gè)未知變數(shù)(即斜率和y截距)。在附錄D表(在標(biāo)簽11)題為“加利福尼亞線性
87、方程表”中提供了兩點(diǎn)可以定義和公式確定格式。</p><p> 直角坐標(biāo)已經(jīng)從結(jié)構(gòu)設(shè)計(jì)提供了一種解決方案點(diǎn)。我們可以確定點(diǎn)2的坐標(biāo)(x2,y2)。x2的值配合比設(shè)計(jì)的目標(biāo)空氣含量(即x2=6.5%)。 在y2型的值是一定配合比設(shè)計(jì)中的單位重量。 這視由設(shè)計(jì)總和除以求和絕對(duì)量將永遠(yuǎn)是27.00立方英尺而定。 為工作表下面的例子計(jì)算的基礎(chǔ)上配合比設(shè)計(jì)及配比值本章前面介紹的這一點(diǎn)。 </p><
88、;p> 例:x2= 6.5% </p><p> y2=Σ設(shè)計(jì)批次重量÷27.00ft3</p><p> y2=3871lbs÷27.00ft3</p><p> y2= 143.4 lbs/ft3(四舍五入至小數(shù)點(diǎn)第一位) </p><p> 關(guān)于點(diǎn)2的坐標(biāo)為(x2= 6.5,y2= 143.4),
89、如圖3.2所示。重要的是要注意,第2點(diǎn)為單位的重量計(jì)算至最接近的0.1 lbs/ft3。 </p><p> 點(diǎn)1,現(xiàn)在必須確定代表截距坐標(biāo)(x1,y1)。這是通過從理論上消除所有缺陷和夾帶的空氣混合對(duì)混凝土的單位重量計(jì)算。這個(gè)x1的值是0.0%的空氣含量。y1的值取決于再次獲得一批設(shè)計(jì)重總和除以設(shè)計(jì)除了夾帶或夾帶空氣的絕對(duì)量,本卷將永遠(yuǎn)27.00立方英尺- 1.76立方英尺=25.24立方英尺。下面的例子說明
90、了在工作表如何。</p><p><b> 計(jì)算一坐標(biāo)點(diǎn) </b></p><p> 例如:x1= 0.0% </p><p> y1=Σ批重量的設(shè)計(jì)÷25.24立方英尺 </p><p> y1=3871磅÷25.24立方英尺 </p><p> y1= 153.
91、4 lbs/ft3(四舍五入至小數(shù)點(diǎn)第一位) </p><p> 直角坐標(biāo)點(diǎn)1,(x1= 0.0,y1 = 1.534),隨著把點(diǎn)繪制在圖3.5,例子說明。 再次注意到,單位重量計(jì)算至最接近的0.1 lbs/ft2。 </p><p> 重要的是要記住,由于空氣從混凝土移除,水泥,細(xì)骨料,粗骨料,水的質(zhì)量不再代表數(shù)額相對(duì)1.000立方碼的混凝土。未經(jīng)混凝土含氣量6.5%的目標(biāo)(1.
92、76立方英尺)只會(huì)產(chǎn)生0.9348立方碼的混凝土。實(shí)際水泥和混凝土水分含量每立方碼會(huì)增加1.000由于下屈服。 6.5%的目標(biāo)沒有空氣含量(1.76立方英尺)只會(huì)產(chǎn)生具體0.9348立方碼的混凝土。實(shí)際的水泥和混凝土每1.000立方碼含水量會(huì)增加的結(jié)果下屈服。如果超過6.5%的目標(biāo),空氣含量的增加,實(shí)際的水泥和水含量每1.000立方碼將作為對(duì)高產(chǎn)結(jié)果少。但是,在任何情況下,水和水泥的比例占罰款總額的比例保持不變。</p>
93、<p> 從X和Y坐標(biāo)點(diǎn)1和2,現(xiàn)在有足夠的信息來解決和方程為y軸截距的線性變量的斜率。有關(guān)斜率表計(jì)算,也稱為“上升/運(yùn)行”,是體現(xiàn)如下: </p><p><b> 例: </b></p><p> 斜率=m=(y2 -y1 )/(x2 -x1 ) </p><p> m=(143.4 -153.4)/(6.5 - 0.0)
94、 </p><p> m=(?10.0)/(6.5) </p><p> m=?1.54(負(fù)值,四舍五入至小數(shù)點(diǎn)第二位) </p><p> 重要的是要注意斜.率的值將永遠(yuǎn)是負(fù)的,因?yàn)閱挝恢亓颗c空氣成反比。 </p><p> 在y軸截距值(b)僅僅是1點(diǎn),這已被確定協(xié)調(diào)。在這個(gè)例子中的問題,工作表將顯示解決方案B,如下所示:<
95、/p><p><b> 例如: </b></p><p> y軸截距= B=y1</p><p> b = 153.4lbs/ ft 3 </p><p> 斜率和y軸截距的計(jì)算和四舍五入值現(xiàn)在可以插入,分別為線性方程的變量m和b。線性方程現(xiàn)在可以完成混凝土配合比設(shè)計(jì)。下面的數(shù)字結(jié)果: </p><
96、;p><b> 例如: </b></p><p> 預(yù)計(jì)單位重量=m(空氣)+ b </p><p> 預(yù)計(jì)單位總量=-1.54(空氣)+153.4</p><p> ?。┎块T同意配合比設(shè)計(jì) </p><p> 這是該部的項(xiàng)目工程師/項(xiàng)目主管進(jìn)行配合比設(shè)計(jì)的每一個(gè)完整而徹底的審查和質(zhì)量控制/質(zhì)量保證上部
97、結(jié)構(gòu)混凝土配合比的責(zé)任。有一項(xiàng)工作是由加利福尼亞確定的目標(biāo)為基礎(chǔ),而和其中水灰比線性方程最大的極限值無關(guān)。極值的上限重要性,這決定是否要額外氣瓶投作為調(diào)查的一部分,這可能導(dǎo)致材料驗(yàn)收抽樣檢驗(yàn)失敗,每AASHTO標(biāo)準(zhǔn)? 277和隨后采取的行動(dòng),其中可能涉及。 </p><p> 在CMD正確檢查中的第一步是驗(yàn)證當(dāng)前的批準(zhǔn)材料的來源。經(jīng)批準(zhǔn)和/或資格預(yù)審材料的清單,用于核實(shí)批準(zhǔn)的水泥來源,粉煤灰,礦渣微粉,硅灰,化
98、學(xué)外加劑及引氣劑?;炷恋拇旨?xì)骨料成分,必須來自經(jīng)批準(zhǔn)的認(rèn)證骨料材料生產(chǎn)者。該骨料</p><p> 級(jí)配和質(zhì)量規(guī)格的,還必鑒定,特別是如果留在就地金屬甲板形式被用于輕甲板的建設(shè)。如果美聯(lián)社上層建筑粗骨料質(zhì)量要求,PE/ PS將正實(shí)質(zhì)量狀況。這將包括采礦作業(yè)產(chǎn)生所要求的質(zhì)量聚集性質(zhì)。PE/ PS應(yīng)該聯(lián)系材料及試驗(yàn)區(qū)工程師或區(qū)域地質(zhì)學(xué)家確認(rèn)。 </p><p> 除了骨料級(jí)配,PE/ P
99、S必須驗(yàn)證并作為粗細(xì)骨料被合理采納的資源。如果承包者的采納值與保守測(cè)試方法更精確的定義不同,差異都會(huì)被調(diào)查。 </p><p> 容重和集料吸收測(cè)量該部的一部分,作為一年一度的“生產(chǎn)質(zhì)量結(jié)果摘要”,并定期點(diǎn)利用的樣本。此數(shù)據(jù)為吸收和比重比較正確的基礎(chǔ)。圖3.5和3.6是容重圖法(SSD)與粗細(xì)骨料吸收,并作為例子提出歷史數(shù)據(jù)可能尋找特定產(chǎn)品,如信息匯總來源。</p><p> 通常來源
100、將表現(xiàn)出具體的重力趨勢(shì)散裝法(SSD)被吸收成反比,但這種可能并非總是如此。圖3.6表示結(jié)果數(shù)據(jù)生產(chǎn)質(zhì)量INDOT摘要為粗骨料的具體來源#8。美聯(lián)社質(zhì)量石頭來自利奇斯1803年,1804年,第19和20作為一個(gè)替補(bǔ)處理工作。這四個(gè)利奇斯有7.9英尺,8.9英尺,5.9和12.1英尺。由于這些利奇斯范圍在2%至4%的吸收,對(duì)容重的一致性和吸收依賴于總源的處理臺(tái)階能力以統(tǒng)一的方式。區(qū)地質(zhì)學(xué)家是獲得從“生產(chǎn)質(zhì)量最好的結(jié)果摘要?dú)v史數(shù)據(jù)源”和“點(diǎn)
101、,使用”樣本的總來源。他們將協(xié)助承辦PE/PS測(cè)試結(jié)果適當(dāng)審查。 </p><p> 重要的是要明白,INDOT歷史散裝比重由粗骨料來源(干或SSD)是基于程序的AASHTO標(biāo)準(zhǔn)? 85 8.1記錄。因此,承包商必須測(cè)試粗骨料按照同樣的程序,即使結(jié)果是通常不恰當(dāng)?shù)幕炷僚浜媳仍O(shè)計(jì)。如果是有足夠的配合比設(shè)計(jì)提前通知提出,它成為最好的新聞部取得程序的AASHTO標(biāo)準(zhǔn)? 85,這是一個(gè)適當(dāng)8.2粗骨料和容重(SSD)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 道橋?qū)I(yè)畢業(yè)設(shè)計(jì)---大橋混凝土配合比設(shè)計(jì)
- 畢業(yè)設(shè)計(jì)---混凝土的配合比設(shè)計(jì)
- 畢業(yè)設(shè)計(jì)論文水泥混凝土配合比設(shè)計(jì)論文
- 混凝土畢業(yè)設(shè)計(jì)外文翻譯
- 聚酯纖維瀝青混合料配合比設(shè)計(jì)畢業(yè)設(shè)計(jì)論文
- 聚酯纖維瀝青混合料配合比設(shè)計(jì)畢業(yè)設(shè)計(jì)論文
- 動(dòng)畫專業(yè)畢業(yè)設(shè)計(jì)外文翻譯
- 水泥專業(yè)畢業(yè)設(shè)計(jì)---外文翻譯
- 汽車專業(yè)--畢業(yè)設(shè)計(jì)外文翻譯
- 土木專業(yè)畢業(yè)設(shè)計(jì)外文翻譯
- 網(wǎng)頁設(shè)計(jì)專業(yè)畢業(yè)設(shè)計(jì)外文翻譯
- 【畢業(yè)設(shè)計(jì)】c30—c45混凝土配合比優(yōu)化設(shè)計(jì)
- 【畢業(yè)設(shè)計(jì)】c30—c45混凝土配合比優(yōu)化設(shè)計(jì)
- 供熱專業(yè)畢業(yè)設(shè)計(jì)外文翻譯
- 機(jī)械專業(yè)畢業(yè)設(shè)計(jì)外文翻譯
- 瀝青混凝土配合比設(shè)計(jì)
- 噴射混凝土配合比設(shè)計(jì)
- 水泥混凝土配合比設(shè)計(jì)
- 混凝土配合比設(shè)計(jì)ppt
- 畢業(yè)設(shè)計(jì)--液體混合比控制
評(píng)論
0/150
提交評(píng)論