版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p> 英 文 翻 譯 </p><p> INTRODUCTION TO MECHATRONICS</p><p> 1: What Is "Mechatronics"?</p><p> "Michatronics" is a term coined by the Japanese t
2、o describe the integration of mechanical</p><p> and electronics engineering. The concept may seem to be anything but new ,since we can all</p><p> look around us and see a myriad of products
3、that utilize both mechanical and electronic dis- </p><p> cipplines. Mechatronics,however ,specifically refers to a multidisciplined ,integrated approach</p><p> to product and manufacturing s
4、ystem design .It represents the next generation of machines,</p><p> robots ,and smart mechanisms necessary for carrying out work in a variety of environments-</p><p> primarily ,factory autom
5、ation ,office automation ,and home automation as show in Figure 1.</p><p> By both implication and application ,mechatronics represents a new level of integration </p><p> for advanced manufac
6、turing technology and processes .The intent is to force a multidisciplinary </p><p> approach to these syetems as well as to reemphasize the role of process understanding and </p><p> control
7、.This mechatronic approach is currently speeding up the already-rapid Japanese process</p><p> for trasforming ideas into products .</p><p> Currently ,mechatronics describes the Japanese prac
8、tice of useing fully intefrated teams </p><p> of product designers ,manufactring, purchasing, and marketing personnel acting in concert with</p><p> each other to design both the product and
9、the manufacturing syestem.</p><p> The Japanese recognized that the future in producdtion innovation would belong to those who </p><p> learned how to optimize the marriage beween eletronic a
10、nd mechanical systems.They realized,in</p><p> particular ,that the need for this optimizatong would be most intense in application of advanced manufacturing and production systems where artificial intellig
11、ence ,expert</p><p> systems ,smart robots, and advanced manufacturing technology systems would create the next </p><p> generation of tools to be used in the factory of the future.</p>
12、<p> From the very beginnings of recorded time ,mechanical systems have found their way into every</p><p> aspect of our society .Our simplest mechanisms ,such as gears ,pulleys, springs,and wheeles.
13、</p><p> have provided the basis for our tools .Our electronics technology,on the other hand ,is completely</p><p> twentieth-century ,all of it created within the past 75 years.</p>&l
14、t;p> Until now ,electronics were included to enhance mechanical systems' performance ,but the </p><p> emphasis remained on the mechanical product .There had never been any master plan on how the &l
15、t;/p><p> integration would be done .In the past ,it had been done on a case -by-case basis .More recently</p><p> ,however,because of the overwhelming advances in the world of electronics and it
16、s capability </p><p> to physically simplify mechanical configurations ,the technical community began to reassess</p><p> the marriage between these two disciplines.</p><p> The
17、most obvious trend in the direction of mechatronic innovation can be observed in the </p><p> automobile industry .There was atime when a car was primarily a mechanical marvel with a</p><p>
18、 few electronic appendages.</p><p> First came the starter motor ,and then the generator ,each making the original product a bit </p><p> better than it was before .Then came solid-state elect
19、ronics,and suddenly the mechanical marvel</p><p> became an electro-mechanical marvel .Today's machine is controlled by microprocessors ,built by</p><p> robots ,and fault-an-alyzed by a c
20、omputer connected to its "external interface connector".</p><p> Automotive mechanical engineers are no longer the masters of their creations.</p><p> The process that describes the
21、evolution of the autimibile is somewhat typical of other </p><p> productds in our society.Electronics has repeatedly improved the performance of mechanical </p><p> systems ,but that innovati
22、on has been more by serendipity than by design .And that is the essence</p><p> of mechatronica the preplanned application of ,and the efficient integration of,mechanical</p><p> and electron
23、ics technology to create an optimum product.</p><p> A recent U.S. Department of Commerce report entitled "JTECH Panel Report on Mechatronics </p><p> in Japan"compared U.S and Japan
24、ese research and development trends in specific areas of mechatronics </p><p> technology.Except for afew areas ,the technology necessary to accomplish the development of</p><p> the next gene
25、ration of systems embodying the principles of mechatronics is fully within the </p><p> technological reach of the Japanede .</p><p> Comparisons were made in three categories :basic research
26、,asvanced development, and product</p><p> implementation.Except for machine vision and software ,Japanese basic research was comparable </p><p> to the United States,with the Japanese closing
27、 in fase on macchine vision system technology.</p><p> Japanese artificial intelligence research is falling behind ,primarily because the Japanese do</p><p> not consider it an essential ingre
28、dient of their future systems ,they appear capable of closing </p><p> even that gap,if required .In the advanced development and product implementation areas,Japan</p><p> is equal to or bett
29、er than the United States,and is continuing to pull ahead at this time .</p><p> The Department of Commerce report concleuded that Japan is maintaining itsposition and is</p><p> in some cases
30、 gaining ground over the United States in the application of mechatronics .Their</p><p> progress in mechatrinics is important because it addresses the very means for next generation</p><p> o
31、f data -driven advanced design and manufacturing technology. In fact ,the Department of Commerce </p><p> repert cincludes that this has created a regenrative effect on Japan's manufacturing industries.
32、</p><p> TO clese the gap ,we will need to go much further than creating new tools .If we accept</p><p> the fact that mechanical systems optimally coupled with eletronics components will be t
33、he wave</p><p> of the future ,then we must also understand that the pipple effect will be felt all the way back</p><p> to the university,where we now keep the two disciplines of mechanics an
34、d eletronics separated and</p><p> allow them to meet only in occasional overview sessions .New curricula must be create fir a new</p><p> hybrid engineer a mechatronics engineer .Only then ca
35、n we be assured that future generations </p><p> of product designers and manufactuiing engineers will full seek excellence in these new techniques.</p><p> We need to rethink our present day
36、approach of separating our engineering staffs both and</p><p> from each other and from the producting engineers .Living together and communicating individual</p><p> knowledge will be the ke
37、y to optimum designs and new product development .</p><p> The definition of mechatronics is much more significant than its combined words imply .</p><p> It can physically turn engineering a
38、nd manufacturing upside down. It will change the way we </p><p> design and produce the next generating of high technology products.The nation that fully implements </p><p> the rediments of m
39、echatronics and vigorousely pursues it will lead the word to a new generation </p><p> of technology innovation with all its profound implications.</p><p> 2.Benefits Of Mechatronics</p&
40、gt;<p> Mechatronics may sound like utopia to many product and manufacturing managers it is often presented as the solution to nearly all of the problems in manufacturing . In particular ,it promises to increase
41、productivity in the factory dramatically.Design changes are easy with extensive use of mechatronic elements such as CAD; CAP and MIS systems help in scheduling ; and flexible manufacturing systems ,computer-aided design
42、 ,and computer –integrated manufacturing equipment cut turnaround time for m</p><p> Many companies that make extensive use of computers view their factories as examples of mechateonic concepes, but on clos
43、e wxamination their integration is horizontal-in the manufacturing area only –or at best includes primarily manufacturing and managemengt .General Electric ,as part of its effort to become a major bendor of factory autom
44、ation systems ,including its Erie Locomotive Plant, its Scjenectady Steam Turbine Plant, and its Charlottesville Controls Manufacturing Division. The primary b</p><p> High Capitial Equipment Utilization &l
45、t;/p><p> Typically , the throughput for a set of machines in a mechatronics system will be up to three times that for the same machines in a stand-alone job shop environment . The mechatronic system achieves
46、 high efficiency by having the computer schedule every part to a machine as soon as it is free , simultaneously moving the part on the automated material handling system and downloading the appropriate computer program
47、to the machine . In addition , the part arrives at a machine already fixtured on </p><p> Reduced Capital Equipment Costs</p><p> The high utilization of eqipment results in the need for f
48、ewer machines in the mechatronic system to do the same work load as in a conventional systenm . Reductions of 3:1 are common when replaceing machining centers in a job-shop situation with a mechatronic system. </p>
49、;<p> Reduced Direct Labor Costs </p><p> Since each machine is completely under computer control ,full-time oversight is not repaired . Direct labor can be reduced to the less skilled personnel
50、who fixture and defixture the parts at the work station ,and a machinist to oversee or repair the work stations ,plus the system supervisor . While the fixturing personnel in mechatronic environments require less advance
51、d skills than corresponding workers in conventional factories , labor cost reduction is somewhat offset by the need for computi</p><p> Reduced Work-in –Process Inventory and Lead Time</p><p>
52、; The reduction of work –in-process in a mechatronic system is quite dramatic when compared to a job-shop environment . Reductions of 80 percent have been reported at some installations and may be attributed to a variet
53、y of factors which reduce the time a part waits for metal-cutting operations. These factors include concentration of all the equipment required to produce part into a small area ;reduction in the number of fixtures requi
54、red ;reduction in the number of machines a part must travel thr</p><p> Responsiveness to Changing Production Requirements</p><p> A mechatronicsystem has the inherent flexibility to manuf
55、acture different products as the demands of the demands of the marketplace change or as engineering design changes are introduced .Furthermore , required spare part production can be mixed into regular runs without sign
56、ificantly disrupting the normal mechatronic system production activities.</p><p> Abulity to Maintain Prodution</p><p> Many mechatronic system are designed to degrade gracefully when one
57、or more machines fail . This is accomplished by incorporating redundant machining capability and a material handling system that allows failed machines to be bypassed . Thus , throughput is maintained at a reduced rate.&
58、lt;/p><p> High Product Quality</p><p> A sometimes-overlooked advantage of a mechatronic system , especially when compare to machines that have not been federated into a cooperative system , i
59、s improve product quality . The basic integration of product design characteristics with production capability ,the high level of automation , the reduction in the munber of fixtures , and greater attention to part/machi
60、ne alignment all result in a good individual part quality and excellent consistency from one workpiece to another ,further res</p><p> Operational Flexibility </p><p> Operational flexibilit
61、y offers a significant increment of enhanced productivity . In some facilities , mechateonic system can run virtually unattended during the second and the third shifts . This nearly “unmanned “ mode of operation is curr
62、ently the exception rather than the rule . It should , however, become increasingly common as better sensors and computer controls are developed to detect and handle unanticipated problems such as tool breakages and part
63、-flow jams . In this operational mode</p><p> Capacity Flexibility </p><p> With correct planning for available floor space , a mechatronics system can be designed for low production volumes
64、 initially ;as demand increase , new machines can be added easily to provide the extra capacity required.</p><p> Mechatronic System Elements</p><p> This chapter provides a brief introducti
65、on to the mechatronic system concept and the system elements required to implement mechatronic technology . The stress is on factory automation ,whiche will serve as the foundation for mechatronic technology integration
66、in office automation and home automation .</p><p> System Concept </p><p> Mechatronic production systems include all aspects of product design , manufacturing , and plant management , in a
67、coordinated data-driven computer-as-sisted system .But unlike any other process before , they will also include the operationts that are the involed in defining the product a plant is to manufacture .It is precisely here
68、 that the Japanese have excelled ,making many American firms take notice and wonder why their share of the market is disappearing.</p><p> A close inspection of the process would receal that the Japanese ha
69、d created new products that were so much attuned to the using public that our statle products lacked luster in the market-place . They created a need for their products and did so by that age-old principle which states,
70、“give the customer what he wants ,not what you think he wants .”</p><p> Sharing the design process with customer is an interesting process that , when considered as part of the mechatronic philosophy , b
71、ecomes the prime mover for everything else that happens in factory automation.</p><p> There are three general groups of mechatronic functions , as shown in Figure 2: market needs analysis ,which results in
72、 user-oriented product design ; manufacture(both fabrication and assembly ) of products on the factory floor; and enlightened management of factory operations . The three general groups noted above ,stressing the need fo
73、r inproved design , product manufacturing ,and enlightened management ,are not necessarily mutually exclusive . In fact , the goal of introducing mechatronics in</p><p><b> 漢語翻譯</b></p>&
74、lt;p><b> 機電一體化概述</b></p><p><b> 1:何為機電一體化</b></p><p> 機電一體化是日本人新造的術(shù)語,用來描述機械工程與電子工程的結(jié)合。機電一體化的念除了是個新的概念之外,還可以看成包含任何東西的概念,因為我們周圍有許許多多的數(shù)不清的產(chǎn)品都是機械和電子技術(shù)有機結(jié)合的產(chǎn)物。然而機電一體化特別指
75、的是多學(xué)科相結(jié)合的產(chǎn)品設(shè)計和制造系統(tǒng)的方法,他代表著下一代的機器、機器人和靈敏的機械能夠在一系列不同的環(huán)境下進行工作。主要是:工廠自動化、辦公自動化、家庭自動化,如下圖1所示</p><p> 同時應(yīng)用機電一體化代表著一個新的層次上的先進生產(chǎn)技術(shù)和過程相結(jié)合。這就意味著把包含多種學(xué)科并且反復(fù)強調(diào)的方法應(yīng)用于那些系統(tǒng),這與把理解和控制放在一個重要的地位上是一樣的。這種機械與電子技術(shù)相結(jié)合的方法使現(xiàn)今觀念轉(zhuǎn)變已經(jīng)比
76、較快的日本更快的把技術(shù)應(yīng)用于產(chǎn)品之中。</p><p> 目前,機電一體化闡述了日本人使用充分結(jié)合的隊伍的實踐,這一隊伍包括產(chǎn)品設(shè)計者、制造人員、采購人員和銷售人員,他們相互一致行動,既設(shè)計產(chǎn)品又設(shè)計制造系統(tǒng)。</p><p> 日本人承認(rèn)在生產(chǎn)革命中未來將屬于知道怎樣使用電子系統(tǒng)和機械系統(tǒng)之間相結(jié)合的最好的人們,更特別的是他們意識到這種需要是先進生產(chǎn)技術(shù)和制造系統(tǒng)的優(yōu)化是最強烈的,譬
77、如人工智能、專家系統(tǒng)、靈巧機器人。先進的制造系統(tǒng)能夠創(chuàng)造下一代將來能夠在工廠應(yīng)用的工具。</p><p> 迄今為止,機械系統(tǒng)已經(jīng)在我們社會各方面廣泛應(yīng)用且存在,例如我們的一些簡單機械齒輪、彈簧、輪子都是我們?nèi)粘I畹幕竟ぞ?。在另一方面我們的電子技術(shù)在20 世紀(jì)已經(jīng)在短短的75年內(nèi)就已經(jīng)相當(dāng)?shù)陌l(fā)達了。</p><p> 直到現(xiàn)在,電子技術(shù)從屬于機械系統(tǒng),并來增強機械系統(tǒng)的性能。但是重
78、點仍然放在機械產(chǎn)品的生產(chǎn)上,從沒有把機械和電子相互結(jié)合。在過去,只是就事論事,最近由于世界上電子技術(shù)的不可抵擋的先進性,且能夠?qū)嶋H的簡化機械裝置。機械技術(shù)行業(yè)開始將電子技術(shù)與機械“聯(lián)姻”。</p><p> 最直接的機電一體化改革體現(xiàn)在自動化工業(yè)。我們進入了一個嶄新的時代,一輛汽車是只有幾個電子元件就能控制的機器。</p><p> 首先是起動器馬達,接著出現(xiàn)的是發(fā)電機。每一次都使產(chǎn)品
79、有了新的進步,之后半導(dǎo)體電子元件(由集成塊、晶體管和二極管組成)的出現(xiàn)成為機械行業(yè)的奇跡?,F(xiàn)今的機器是由微處理器控制,由機器人生產(chǎn),故障分析由與外接口連接器連接的電腦控制,自動化機器引擎。電子技術(shù)已再三的改善了機械系統(tǒng)的性能。這是機電一體化的精華─機械技術(shù)和電子技術(shù)預(yù)先計劃應(yīng)用和有效結(jié)合以創(chuàng)造一種最佳的產(chǎn)品。</p><p> 美國貿(mào)易部最近的一篇題為“日本技術(shù)規(guī)則委員會關(guān)于機電一體化評論”的報告比較了美國和日
80、本在機電一體化技術(shù)上的研究和發(fā)展。除了少數(shù)領(lǐng)域外,完成使機電一體化的原理具體化的下一代系統(tǒng)的研制所必須的技術(shù)完全在日本人所能及的范圍內(nèi)。</p><p> 在下列三個方面作了比較:基礎(chǔ)研究、試樣樣品和產(chǎn)品實現(xiàn)三個方面。除了機械視覺系統(tǒng)和軟件系統(tǒng)外,日本的基礎(chǔ)研究與美國的是可以相比的,日本人在機器視覺系統(tǒng)(系統(tǒng)通過傳感、物體識別、圖象分析和解釋來確定物體的方位和形狀的能力,稱為機械視覺系統(tǒng))日本人工智能方面的研究
81、比美國相對落后,主要是日本人不認(rèn)為人工智能是與他們將來系統(tǒng)結(jié)合的關(guān)鍵。如果需要的話,他們甚至關(guān)閉且不研究人工智能。在試樣試品和產(chǎn)品實現(xiàn)方面,日本與美國持平,甚至超過美國,并在一段時間內(nèi)仍保持領(lǐng)先勢頭。</p><p> 美國貿(mào)易部的報告總結(jié)出:日本仍然保持其地位,在一些情況下,對于機電一體化的應(yīng)用仍勝于美國。他們在機電一體化方面的進步是非常重要的,因為它是下一代以數(shù)據(jù)為主導(dǎo)的設(shè)計及制造技術(shù)的重要手段。實際上,美
82、國貿(mào)易部報告的結(jié)論會對日本的工業(yè)生產(chǎn)產(chǎn)生更深遠的影響。</p><p> 為了縮小差距,我們不僅要制造新的工具,而且我們要走的路更遠。如果我們接受電子元件最佳結(jié)合的機械系統(tǒng)將是未來的浪潮。這一事實,那么我們一定能理解。這波紋效應(yīng)一直到大學(xué)都能感覺到。在大學(xué)里我們把機械學(xué)和電子學(xué)這兩門學(xué)科分離,而且僅在偶然的綜合性課程中允許二者相遇?,F(xiàn)在的課程必須能夠創(chuàng)造新的混合型的工程師──機電一體化工程師。只有這樣,我們才能
83、保證將來下一代的產(chǎn)品設(shè)計者和制造工程師將在新的技術(shù)領(lǐng)域有出色的表現(xiàn)。</p><p> 我們必須需要重新思考一下我們現(xiàn)代的劃分我們機電一體化工程師成員的方法,既要彼此互相區(qū)別,而又要與產(chǎn)品工程師相互區(qū)別。居住在一起,個人之間相互交流在產(chǎn)品將產(chǎn)生一種復(fù)雜的效應(yīng)。最大化的相互作用是優(yōu)化設(shè)計和新產(chǎn)品開發(fā)的關(guān)鍵。</p><p> 機電一體化的定義的重要性不在于它是詞語的簡單組合,他把工程技術(shù)
84、和制造技術(shù)相互結(jié)合,他會改變我們設(shè)計和生產(chǎn)下一代高科技產(chǎn)品的方式,充分為機電一體化提供基礎(chǔ),并強有利的推行機電一體化的國家將把世界導(dǎo)向一場具有深遠意義的新一代技術(shù)革命。</p><p> 2:機電一體化的優(yōu)勢</p><p> 機電一體化對于許多產(chǎn)品和制造者聽起來似乎是近乎理想的完美境界,因為機電一體化幾乎能解決生產(chǎn)制造中的所有問題,更特別的是,他很有可能顯著的提高工廠產(chǎn)品的產(chǎn)量。廣泛
85、的利用機電一體化組成部分例如CAD(計算機輔助設(shè)計)、CAP(計算機輔助計劃)和MIS(管理信息系統(tǒng))幫助的編制進度。并且柔性制造系統(tǒng)、計算機輔助設(shè)計、計算機集成制造設(shè)備,可以大大的降低生產(chǎn)制造的工作周期,這子系統(tǒng)降低產(chǎn)品成本和提高設(shè)備的利用率,與CAE(計算機輔助工程)、CAD、CAM(計算機輔助制造)相結(jié)合的機電一體化能創(chuàng)造更經(jīng)濟的產(chǎn)品,利用控制和聯(lián)絡(luò)的提高,降低圖紙數(shù)量,并且CAM設(shè)備減少了安裝和控制機器的時間。</p>
86、;<p> 許多公司更廣泛的利用計算機把他們的工廠看成是機電一體化構(gòu)想的試樣點。但是,經(jīng)過嚴(yán)密考察后,他們的結(jié)合是水平的──只在生產(chǎn)領(lǐng)域──包括主要的生產(chǎn)制造和管理階層。通用電器公司成為工廠汽車系統(tǒng)的主要賣主,已經(jīng)推出其宏偉計劃合并其旗下的數(shù)個公司,包括伊利機車廠、斯克奈塔氣輪機廠、夏洛茨維爾制造分工司。機電一體化的主要優(yōu)勢著重放在先進制造技術(shù)和工廠自動化。</p><p><b>
87、機器設(shè)備的高利用率</b></p><p> 典型的講,一套機電一體化機器設(shè)備的生產(chǎn)量是在獨立車間的環(huán)境下、相同的機器條件下的三倍。當(dāng)機器一空閑下來時,就讓計算機調(diào)度每一個零件到這臺機器,同時在自動材料輸送關(guān)系系統(tǒng)中使零件運動,并且把適當(dāng)?shù)挠嬎銠C程序下行傳輸?shù)竭@臺機器80,這樣就能使機電一體化系統(tǒng)達到很高的效率。另外,已經(jīng)固定在托板上的零件到達機器,以使零件裝卡時機器不必等待──把零件固定在托板上是
88、單獨的工作站上完成的。</p><p><b> 降低設(shè)備資金消耗</b></p><p> 機器設(shè)備的高利用率,原因在于在作用同樣工作時機電一體化系統(tǒng)比傳統(tǒng)的機械系統(tǒng)需要更少的機器設(shè)備。當(dāng)利用機電系統(tǒng)代替加工中心時,減少1/3的機器設(shè)備是正常的。</p><p><b> 降低工人的勞動消耗</b></p&g
89、t;<p> 因為每一臺機器是完全在計算機控制下不用工人一直盯著工作,直接的減少了機器工人的監(jiān)工或者維修工、零件的檢察員,不太需要有技能的人員。例如在車間夾緊、卸下工件。然而,在機電一體化工作環(huán)境下與傳統(tǒng)的工作車間相比不需要更高的技術(shù)。勞動力資金的減少在某種程度上與傳統(tǒng)工作車間不需要的技術(shù)是相互抵消的。有計劃調(diào)度在制工件和減少產(chǎn)品設(shè)計到投產(chǎn)時間或從定貨到交貨時間。</p><p> 與單獨車間環(huán)
90、境下相比,利用機電一體化系統(tǒng)在減少在制工件方面是非常顯著的。據(jù)一些車間報道已經(jīng)減少了80%,這些都歸功于減少了定貨到交貨的時間的諸多因素,這些因素包括:全部生產(chǎn)零件所需的設(shè)備都集中在一個小的區(qū)域內(nèi);所需夾具的數(shù)量的減少;由于加工工藝被組合在工作單元中而引起的零件所必須通過的機器的數(shù)量的減少;以及分批進入的和已在機電一體化系統(tǒng)中的零件要進行有效的計算機調(diào)度。</p><p> 對改變的產(chǎn)品的需求快速響應(yīng)</
91、p><p> 機電一體化系統(tǒng)對于不同產(chǎn)品的生產(chǎn)需求和市場需求改變或者工程設(shè)計改變都有固有的靈活性。更進一步,備用件的需求不會大大擾亂正常的機電一體化系統(tǒng)的生產(chǎn)活動。</p><p><b> 生產(chǎn)的可維護性</b></p><p> 許多機電一體化系統(tǒng)能夠適度的降低當(dāng)一個或更多的機器失效后不能正常工作的機率。當(dāng)某臺機器失效后多余的機器和原材料
92、控制系統(tǒng)使系統(tǒng)繞過失效的機器,因此,生產(chǎn)量始終保持在一個恒定的百分率上。</p><p><b> 高的產(chǎn)品質(zhì)量</b></p><p> 經(jīng)常性的監(jiān)督機電一體化系統(tǒng),特別是當(dāng)與沒有與合作系統(tǒng)聯(lián)合的機器系統(tǒng)相比能夠更能提高產(chǎn)品的質(zhì)量,產(chǎn)品設(shè)計性能與生產(chǎn)能力的基本結(jié)合,高水平的自動化夾具數(shù)量和駐留的機器數(shù)量的減少,設(shè)計的更好的永久性夾具,更加注意零件與機器的調(diào)整,所
93、有這些都使單個零件質(zhì)量良好,零件之間有極好的一致性,并且導(dǎo)致返工成本的大大減少。</p><p><b> 靈活的控制</b></p><p> 靈活的控制能夠顯著的增加產(chǎn)品的產(chǎn)量,在一些設(shè)施里,機電一體化系統(tǒng)可以在中班和晚班和無人看管條件下自動運行,這種幾乎無人的操作方式目前是例外的情況,而不是常規(guī),但是他可以變成常規(guī)。如果好的傳感器和計算機能夠控制和解決一些非
94、預(yù)期的情況,例如刀具劃傷、零件流動阻滯等等。在這種操作模式下,監(jiān)察、安裝和維修可以在第一班即可完成。</p><p><b> 靈活性</b></p><p> 由于正確的操作可利用的占地面積的計劃,一個機電一體化系統(tǒng)最初可為低產(chǎn)量而設(shè)計。隨著需求的增長,可以容易的增添新機器,以提供需要的附加生產(chǎn)能力。</p><p> 3: 機電一體化
95、的組成</p><p> 這一章節(jié)簡要的介紹機電一體化系統(tǒng)的原理,而且講述了需要機電一體化各個組成部分來實現(xiàn)機電一體化工藝技術(shù)。 機電一體化系統(tǒng)的 重點應(yīng)放在 工廠自動化,因為工廠自動化作為機電一體化整體技術(shù)中辦公自動化和家庭自動化的基礎(chǔ)。</p><p><b> 系統(tǒng)原理</b></p><p> 機電一體化產(chǎn)品生產(chǎn)包括產(chǎn)品設(shè)計的所有
96、方面,產(chǎn)品的生產(chǎn)制造和與工廠管理部門由數(shù)字化驅(qū)動的相互協(xié)調(diào)的計算機輔助系統(tǒng)。但不同于以往的其他工藝技術(shù),他們還包括與確定工長江要制造的產(chǎn)品有關(guān)的工序,這里 恰好是日本人以勝人一籌之處,使得許多美國公司注意并想知道為什么它們(占有)的市場份額正在消失。</p><p> 一份關(guān)于這種工藝的周密調(diào)查講揭示:日本人已創(chuàng)造了非常適合于用戶的新產(chǎn)品,以至我們的陳舊產(chǎn)品在市場上失去了光澤。他們引起了對他們產(chǎn)品的需要,并且是
97、按照那個古老的原則做到這一點的,這個原則是:“給予顧客它所向要的東西,而不是給他認(rèn)為他鄉(xiāng)要的東西。</p><p> 與顧客分擔(dān)設(shè)計過程是一種有趣的過程,當(dāng)把她作為機電一體化基本原理的一部分考慮時,這一過程為在工廠自動化方面發(fā)生的其他一切事實的動力。</p><p> ,機電一體化功能一般分為三類:與用戶相關(guān)的產(chǎn)品設(shè)計的市場分析,在工廠現(xiàn)場的產(chǎn)品的生產(chǎn)制造,開明的工廠經(jīng)營管理。上述三大
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--機電一體化概述
- 外文翻譯--機電一體化概述.doc
- 外文翻譯--機電一體化概述.doc
- 外文翻譯--機電一體化技術(shù)分析
- 外文翻譯--機電一體化技術(shù).doc
- 外文翻譯--機電一體化技術(shù).doc
- 外文翻譯--機電一體化技術(shù).doc
- 外文翻譯--機電一體化技術(shù).doc
- 外文翻譯--機電一體化技術(shù).doc
- 外文翻譯--機電一體化技術(shù).doc
- 外文翻譯--機電一體化技術(shù)分析.doc
- 外文翻譯---機電一體化技術(shù)發(fā)展
- 機電一體化畢業(yè)論文外文翻譯
- 外文翻譯--機電一體化技術(shù)分析.doc
- 機電一體化畢業(yè)設(shè)計外文翻譯
- 外文文獻翻譯--機電一體化技術(shù).doc
- 機械外文翻譯---論機電一體化的發(fā)展
- 機電一體化專業(yè)畢業(yè)設(shè)計外文翻譯
- 外文翻譯--機電一體化全自動橫切機
- 外文文獻翻譯--機電一體化技術(shù).doc
評論
0/150
提交評論