版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 附 錄</b></p><p> 1. 外文資料原件及譯文</p><p><b> ?。?)外文資料原件</b></p><p> Safety Monitoring and Early Warning for Deep Foundation Pit Construction<
2、;/p><p> Haibiao WANG【1】,Haixu YANG 【2】, Xibin DONG 【3】, and Songyuan NI【4】</p><p> 1.School of Engineering Technique, Northeast Forestry University, Harbin,Heilongjiang 150040, China; PH (086) 4
3、51-82191771; email: whbcumt@163.com</p><p> 2.School of Civil Engineering , Northeast Forestry University, Harbin, Heilongjiang150040, China; PH (086) 451-82190402; email: yhxcumt@163.com</p><p&g
4、t; 3.School of Engineering Technique, Northeast Forestry University, Harbin,Heilongjiang 150040, China; PH (086) 451-82190392; email: yhxcumt@163.com</p><p> 4.School of Engineering Technique, Northeast Fo
5、restry University, Harbin,Heilongjiang 150040, China; PH (086) 451-82190335; email: sdrznsy@163.com</p><p><b> ABSTRACT</b></p><p> Based on an engineering project, this paper init
6、ially establishes an observation point for foundation pit and then determines monitor warning value. During project construction, we carried out an experiment on the horizontal movement and settlement and inclination of
7、adjacent buildings and promptly monitored the foundation pit., Scientific analysis of the data is presented. This work is designed to provide for effective measures to implement security alerts for foundation constructio
8、n.Detailed a</p><p> With the rapid development of urbanization in China, the deep excavation works require have been put forward strict demand regulations concerning due to the requirements of the spatial
9、location, structural stability and using function. Deep excavation engineering is mostly carried out in areas of heavy traffic and dense construction. The complexity associated with deep excavation depth and difficult co
10、nstruction creates environments where serious accidents can occur. The deep excavation work is </p><p> Previous research on accidents in national deep foundation pit engineering found the general accident
11、ratio was about 20% of that of the deep excavations work (Tang, 1997). Most accidents in urban areas were caused by foundation pit support. In deep excavation engineering, both the strength and deformation of the support
12、ing structure and the surrounding environment affected by pit deformation should be considered (Sun, 2006).The pit support systems are always temporary facilities with fewer safe</p><p> (Liu et al., 2007).
13、</p><p> 1.ENGINEERING BACKGROUND</p><p> The deep foundation pit engineering was located at the city center. The ground form type of geological investigation works is the tectonic denudation
14、and the slow hillock at slope base, which was equal to the forefront of third terrace of the Yangtze River and the southwest bordered on the first terrace of the Chengdu plain. </p><p> Soil conditions. Thr
15、ough the field investigation by the Geological Survey Department, the soil conditions at the engineering site are shown as Table 1. </p><p> Table 1. Physical-mechanics index of foundation soil.</p>
16、<p> Hydrological geology conditions of underground. Surface water of the proposed site is not present-development, and the underground water was dominated by the bedrock fracture water. and the small amount of the
17、 upper perched water filled in the 1-1 layer of soil-with-filled.They mainly were supplied by the precipitation and infiltration of surface runoff.The water level of the upper perched water is discontinuous and had small
18、er water volume. The bedrock fracture water grew well nearby the contac</p><p> 2.DESIGN OF FOUNDATION PIT SUPPORT STRUCTURE</p><p> The pit supporting scheme generally is classified to is of
19、two kinds: one is the earth nail wall, and anther one the second is an anchor-retaining pile. The earth nail wall is made up of the reinforced soil, and the earth nail and the board which was placed in the soil. Given th
20、e strengthen of the earth nail in situ and the combination with the spraying-up surface, the natural soil body forms the earth bulkhead. This which is similar to a gravity retaining wall that resists the earth pressure c
21、o</p><p> (1) In AD section of foundation pit, the following parameters were set up: 900mm of guard stake pile diameter, 1300mm of piles interval, 14 meters length of filling pile with man-power dig hole, 1
22、5°inclination angle and 15m length for pile of non-prestressed anchor rod which was established 3m under the natural ground.</p><p> (2) In AB axis section of foundation pit, the following parameters w
23、ere set up: 900mm of guard stake pile diameter, 1300mm of piles interval, 13.4 meters length of filling pile with man-power dig hole, 15°inclination angle and 15m length for pile of non-prestressed anchor rod which
24、was established 3m under the natural ground.</p><p> (3) In BC section of foundation pit, the following parameters were set up: 1000mm of guard stake pile diameter, 1300mm of piles interval, 7 meters length
25、 of filling pile with man-power dig hole, 15°inclination angle and 15m length for pile of non-pre-stressed anchor rod.</p><p> (4) In AB axis section of foundation pit, the following parameters were se
26、t up: 1000mm of guard stake pile diameter, 1300mm of piles interval, 7 meters length of filling pile with man-power dig hole, 15°inclination angle and 16m length for pile of non prestressed anchor rod.</p>&l
27、t;p> 3.FOUNDATION PIT MONITORING</p><p> This foundation pit engineering monitoring rests on《the Engineering survey Standard 》 (GB50026-93) and 《 Construction Distortion Survey Regulations 》 (JGJ/T8-97)
28、.The total length of the foundation pit is 176 meters, the biggest digging depth is 9.8 meters, and the smallest digging depth is 4.2 meters. According to the standard, the security rating of this foundation pit engineer
29、ing is first-level. Before project construction of the foundation pit engineering, reference points B1 and B2 were esta</p><p> 3.1 Observation Point Arrangement</p><p> Total 15 observation p
30、oints were set up separately around the foundation pit for monitoring the horizontal displacement of the supporting and protecting structure top. This project installed the observation points underground during 5 days. T
31、he arrangement of observation points were shown in figure 1:</p><p> 3.2 Foundation Pit Monitoring Facilities</p><p> According to《Engineering survey Standard》,to satisfy the building safety f
32、ortification requirement, the horizontal displacement monitoring in the project construction of foundation pit engineering uses total station TOPCOM GTS-701. The settlement observation used level browser TOPCOM AT-G2. Th
33、e elevation probable error in the settlement monitoring points should not be bigger than ±0.2mm, and the elevation difference error in the adjacent deformation monitoring points should not be bigger than 0.</p>
34、;<p> 3.3 Monitoring Security Value</p><p> According to the project standard and the determination principle of security value, the security value of the foundation pit engineering was determined a
35、s follows: the horizontal displacement around the foundation pit did not surpass 40mm, and the displacement speed did not be bigger than 5mm/d; for the road settlement, the settlement value did not surpass 30mm and the s
36、ettlement speed did not be bigger than 2mm/d; for the settlement and inclination rate of adjacent buildings, the biggest settl</p><p> Fig.1 Arrangement of horizontal displacement observation points.</p&
37、gt;<p> 3.3 Monitoring Security Value</p><p> According to the project standard and the determination principle of security value, the security value of the foundation pit engineering was determined
38、 as follows: the horizontal displacement around the foundation pit did not surpass 40mm, and the displacement speed did not be bigger than 5mm/d; for the road settlement, the settlement value did not surpass 30mm and the
39、 settlement speed did not be bigger than 2mm/d; for the settlement and inclination rate of adjacent buildings, the biggest settl</p><p> 4.MONITORING RESULTS AND ANALYSIS OF THE FOUNDATION PIT</p>&l
40、t;p> After the excavation and the foundation construction, the monitoring results were recorded and arranged and analyzed for early warning timely for foundation pit. The time-history curves(fig.2~fig.9) corresponds
41、to the initial period at four stages which include that the first layer excavation (the excavation depth was about 4m) and the second layer excavation(the excavation depth was about 6m) and the third layer was full-depth
42、 excavation and demolishing supporting and protecting system.</p><p> 4.1 Monitoring and Analysis of Horizontal Displacement</p><p> In the horizontal displacement monitoring for the sealing b
43、eams of the supporting and protecting structure of foundation pit, the horizontal displacement monitoring results of supporting and protecting structure around the foundation pit are shown in Fig. 2 to Fig. 5. The horizo
44、ntal displacement time-history curve showed that the horizontal displacement of the peripheral supporting and protecting system increases fast in short-term and then becomes gradually steady. </p><p> The h
45、orizontal displacement time-history curve also indicated that the horizontal displacement of the AB section is bigger, with 40.8mm at spot S5, 33.0mm at spot S6, 27.5mm at spot S4, 25.6mm at spot S3, 32.6mm at spot S13 o
46、f the CD section. Among these, the displacement of spot S5 achieves the security value, and that of S6, S13 approach the security value. The test group gave the warning when submitting test results timely, made the risk
47、prompt, and proposed the supporting and protecting stru</p><p> Fig.2 Time-history chart of horizontal Fig.3 Time-history chart of horizontal</p><p> displacement monitoring of
48、 the displacement monitoring of the</p><p> supports and protections in AD section supports and protections in AB section</p><p> Fig.4 Time-history chart
49、 of horizontal Fig.5. Time-history chart of horizontal</p><p> displacement monitoring of the displacement monitoring of the</p><p> supports and protection
50、s in BC section. supports and protections in CD section.</p><p> 4.2 Inclination Monitoring and Analysis of Foundation Pit</p><p> During each early stage from foundation excava
51、tion to demolishing supporting and protecting system, inclination rate increases fast at the short-term, then becomes steady gradually. The inclination observed value of the Q2, Q3 and Q4 is 1.18 ‰, 1.05 ‰, 0.86 ‰ respec
52、tively, and other observed value are smaller; and the observed value develops quickly when demolishing the supports, as shown in fig.6 and fig.7. For guaranteeing the scene construction safety, the measurement results we
53、re submitted t</p><p> Fig.6. The time-history chart of Fig.7. The time-history chart</p><p> inclination of adjacent building of inclination of adjacent building
54、</p><p> monitoring in AB section. monitoring in BC、CD section.</p><p> 4.3 Monitoring and analysis about settlement of the foundation pit</p><p> During each
55、 early stage from foundation excavation to demolishing supporting and protecting system, the settlement increases fast at the short-term, and then becomes steady gradually, and the settlement increases fast after demolis
56、hing the supports. Settlement observed value of the C2, C3 and C4 is 16.5m, 15.5m, 13.2m respective, other observed value is small, as shown in fig.8 and fig.9. For safety, the measurement results were submitted to Const
57、ruction Organization.</p><p> Fig.8. The time-history chart of settlement Fig.9. The time-history chart of settlement</p><p> of roads monitoring in AB、AD section. of ro
58、ads monitoring in BC、CD section.</p><p> 4.4 Forewarning Management and Safety Control</p><p> In the course of safety monitoring of the foundation pit, it is an important work before safety s
59、upervision to determine monitor warning value reasonably according to pit bracing calculation. It can bring disadvantageous influence to the foundation pit management if the monitor warning value is over sized or too sma
60、ll. When the monitor value achieves or approaches the security value, it will implement the safe early warning plan promptly. The monitoring personnel should send the forewarning docu</p><p> In the course
61、of safety monitoring of the foundation pit, settlement of roads and inclination of adjacent building monitoring value was smaller than the warning value. In the horizontal displacement observation of the foundation pit,
62、displacement increased fast when excavating (depth was 4.2m) the first layer, and the development speed was rapid. For the increasing tendency is obvious, the observation frequency was increased for partial observation p
63、oints, so as to the inclination observation. T</p><p> 5. CONCLUSIONS</p><p> Through the horizontal displacement and settlement and inclination of adjacent building monitoring for foundation
64、pit promptly, safety control can be carried on scientifically and effectively for the project construction of the foundation pit becomes true (Zhu et al., 2006). According to progress of the project construction and anal
65、ysis of the monitor data, it can timely and effectively obtain the safety forewarning, and realize the information construction with scientific idea. And adopting eff</p><p> In the safety monitoring work f
66、or the deep foundation pit, because of the monitoring for long time and high requirement of the instrument precision and betimes character of the data analysis and the risk forewarning, thus, the safety monitor work has
67、great difficulty. Along with enhancing the safety consciousness for the project construction of the deep foundation pit and the deep scientific research, it is possible to further systemize and standardize the safely mon
68、itor work. In the monitoring,</p><p> REFERENCES</p><p> [1]Tang Yeqing (1997). Prevention and processing of accidents of the deep foundation pit. Construction Technique, (1),4-5.</p>&
69、lt;p> [2]Sun Zhibin (2006). The influence of the deep foundation pit to environment . Ground Engineering, (5), 24-26.</p><p> [3]Liu Rong (2006). The research about early warning system of project const
70、ruction of the deep foundation pit based on risk management . Southeast University, Nanjing.</p><p> [4]Liu Yuyi, and An Qingjun, and Wang Xudong (2007). Distortion monitor and analysis of the foundation pi
71、t in hard soil location. Nanjing Industrial University Journal (natural sciences version) , (2), 46-50.</p><p> [5]Lu Sanhe (2003) . Design and research about distortion control of support and protection of
72、 the deep foundation pit. China Oceanography University, Qingdao.</p><p> [6]Long Sichun, and Yang Minchun, and Deng Lianjun (2005) . Two kind of practical method of horizontal displacements observation and
73、 the precision analysis[J]. Survey and Spatial Geography Information, (5), 57-59.</p><p> [7]Zhu Jianmin, Li Guoguang (2006). The application of information monitor technology in the management of project c
74、onstruction of the foundation pit [J]. Today Science and Technology, (10), 37-39.</p><p> [8]Li Qimin, Kong Yongan (1999). Generalized analysis about project accidents of the deep foundation pit in China. S
75、cientific and Technical Information Development and Economy, (2), 21-24.</p><p><b> ?。?)譯文</b></p><p> 深基坑施工的安全監(jiān)測和預(yù)警</p><p><b> 摘要:</b></p><p>
76、; 基于工程項(xiàng)目之上,本文最初對基坑建立了一個(gè)觀察點(diǎn),其功能為確定基坑監(jiān)測的預(yù)警值。在工程項(xiàng)目的建設(shè)當(dāng)中,我們進(jìn)行了一項(xiàng)關(guān)于水平位移與鄰近建筑物沉降并的實(shí)驗(yàn)并及時(shí)對基坑實(shí)時(shí)監(jiān)測、提交數(shù)據(jù)的科學(xué)數(shù)據(jù)分析報(bào)告。這項(xiàng)工作旨在提供有效的措施,實(shí)現(xiàn)基礎(chǔ)施工的安全報(bào)警。詳細(xì)的分析基坑變形的原因并提出了一種合理的綜合治療措施。其目的是能夠提供出一些科學(xué)基礎(chǔ)和保護(hù)措施以使基礎(chǔ)工程施工保持足夠的安全性,并獲取更多更好的工程施工的技術(shù)。</p>
77、;<p><b> 正文:</b></p><p> 隨著中國城市化的快速發(fā)展,深基坑的開挖工程對其需要空間的位置、結(jié)構(gòu)的穩(wěn)定性和使用功能已提出更嚴(yán)格要求規(guī)定。深基坑工程主要應(yīng)用于交通繁忙和高密度施工地區(qū)。由于深基坑開挖深度和施工繁瑣以及相關(guān)的復(fù)雜環(huán)境條件,很可能致使嚴(yán)重的工程事故產(chǎn)生。深基坑開挖工作是一個(gè)全方位綜合性工程技術(shù)的過程。在先前的研究中可知,全國深基坑工程事故的
78、發(fā)生率一般約為全部深基坑工程工作的20%(唐,1997)。多數(shù)發(fā)生在城市的意外事故是因?yàn)榛又ёo(hù)問題不周,在深基坑工程中,由支撐結(jié)構(gòu)強(qiáng)度變化和基坑周圍環(huán)境的變化所引起的變形問題應(yīng)值得考慮(孫,2006)?;又误w系通常為臨時(shí)設(shè)施,因只有較少的安全注意事項(xiàng)而有更多的危害,與此同時(shí),工作狀態(tài)和條件是更復(fù)雜和不確定的,因此,在施工過程中,動(dòng)態(tài)監(jiān)測和控制是非常重要的。深基坑開挖施工現(xiàn)場的監(jiān)測內(nèi)容一般包括支護(hù)結(jié)構(gòu)水平位移、相鄰建筑物的傾斜位移、
79、附近的道路沉降位移等。監(jiān)測人員應(yīng)及時(shí)提供監(jiān)測數(shù)據(jù)的反饋信息(劉,2006),一旦出現(xiàn)到任何問題,能夠?yàn)闇p少災(zāi)害提早發(fā)出警告??梢哉f提供關(guān)鍵信息和科學(xué)有效地管理深基坑施工的監(jiān)測程序是成功的深基坑施工的關(guān)鍵(劉等人,2007)。</p><p><b> 1、工程背景</b></p><p> 深基坑工程通常位于城市中心,來自地質(zhì)勘察工程類型的地形是等同于三陽臺(tái)的長江
80、流域及西南瀕臨階地的成都平原最前沿的構(gòu)造剝蝕和慢崗坡基地。</p><p> 土質(zhì)條件:通過地質(zhì)部門的現(xiàn)場調(diào)查,工程場地地基土質(zhì)物理力學(xué)指標(biāo)如表1所示。</p><p> 表1 地基土質(zhì)物理力學(xué)指標(biāo)</p><p> 地下水文地質(zhì)條件。地表水的擬議站點(diǎn)不是最主要的,與基巖裂縫水有關(guān)的主要是地下的水。少量的上部積水填充土壤1-1層,主要是由降水和地表徑流的滲透所
81、提供。上部積水水位不是連續(xù)的,也不是體積較小的。在基巖裂縫水增長井附近的基石與覆蓋層中的水沿滲透裂縫后在一定程度上會(huì)形成地下水沿滲透冰河的綠色通道,因此使得地下水沿坡面滲透出來。環(huán)境條件分析的結(jié)果和水質(zhì)量的地下水樣本表示站點(diǎn)中的地下水沒有不腐蝕混凝土的結(jié)構(gòu),但有弱腐蝕性的鋼結(jié)構(gòu)。</p><p> 2、基坑支護(hù)結(jié)構(gòu)的設(shè)計(jì)</p><p> 一般支持計(jì)劃的坑就是分類有兩種: 一是土釘墻,
82、二是是錨支護(hù)樁。土釘墻由加筋的土、土釘和安放在土壤中的板材所組成。鑒于原位的土釘和噴涂向上表面,天然土體形式結(jié)合加強(qiáng)土壤艙壁。這類似于重力式擋墻,能抵御來自墻和其他外部勢力的土壓力并能夠增強(qiáng)基坑整個(gè)邊坡的穩(wěn)定性。擋錨樁鉆孔灌注樁擋土墻和樁,錨拉桿通常會(huì)影響邊坡穩(wěn)定性的實(shí)現(xiàn)。錨索支護(hù)樁的機(jī)制是密護(hù)坡樁高彎曲的阻力及抗剪能力,同時(shí)錨拉桿和土體的錨部分以密護(hù)坡樁,能夠共同采取預(yù)拉力強(qiáng)度以防止基坑支護(hù)體系發(fā)生變形。錨桿桿和邊坡防護(hù)樁的綜合的效果
83、增強(qiáng)了整個(gè)的支持和保護(hù)系統(tǒng)的穩(wěn)定。錨索支護(hù)樁適用于各類粘土、沙質(zhì)土壤和較高的地下水位與接地層,尤其是粘性土外圍大集中式負(fù)荷或不同加載(路,2003)?;诒WC安全的原則,本深基坑項(xiàng)目建議在開挖過程中使用擋錨樁基礎(chǔ)進(jìn)行支護(hù)。</p><p> ?。?)在基坑的AD段部分,應(yīng)設(shè)置以下的參數(shù):900毫米的警衛(wèi)樁樁徑、樁間間隔距離為1300毫米、14米的人力挖孔灌注樁的非預(yù)應(yīng)力錨桿長度有15°傾斜角度,15米長
84、度應(yīng)設(shè)立自然地面下3m。</p><p> ?。?)在基坑的AB段部分,應(yīng)設(shè)置以下的參數(shù):900毫米的警衛(wèi)樁樁徑、樁間間隔距離為1300mm、13.4米長度的人力挖孔灌注樁的非預(yù)應(yīng)力錨桿傾斜角度為15°,15米長度應(yīng)設(shè)立在自然地面下3米。</p><p> (3)在基坑的BC段部分,應(yīng)設(shè)置以下參數(shù):1000毫米的警衛(wèi)樁樁徑、 樁間隔1300毫米、7米長度的灌注樁的電源挖孔有15
85、°傾角、非預(yù)應(yīng)力錨桿樁達(dá)15米長度。</p><p> ?。?)在基坑的AB段部分,應(yīng)設(shè)置以下的參數(shù):1000毫米的警衛(wèi)樁樁徑、 樁間隔為1300毫米、7米長度的人力挖孔灌注樁有15°傾角、非樁灌注樁的預(yù)應(yīng)力錨定桿長度達(dá)16米。</p><p><b> 3、基礎(chǔ)基坑監(jiān)測</b></p><p> 基礎(chǔ)基坑工程監(jiān)測取決于
86、《工程測量標(biāo)準(zhǔn)》(GB 50026-93)與《施工變形調(diào)查規(guī)定》(JGJ/T8-97)。規(guī)定有基坑的總長度為176米、最大開挖深度為9.8米、最小的挖掘深度為4.2米。通過此標(biāo)準(zhǔn)可知此基坑工程的基礎(chǔ)安全等級為一級。在基坑工程的項(xiàng)目施工前,應(yīng)當(dāng)提前建立B1和B2兩個(gè)基準(zhǔn)點(diǎn),并在結(jié)合基準(zhǔn)點(diǎn)水平位移監(jiān)測建立坐標(biāo)系統(tǒng),觀察到的項(xiàng)目建設(shè)水平位移進(jìn)展情況期為每5天一次。</p><p><b> 3.1 觀測點(diǎn)布
87、設(shè)</b></p><p> 總共的15個(gè)觀測點(diǎn)分別用于支撐和保護(hù)結(jié)構(gòu)頂部的水平位移監(jiān)測與基坑周邊形變監(jiān)測。這項(xiàng)工程安排在5天內(nèi)進(jìn)行監(jiān)測,觀察點(diǎn)的布設(shè)如圖1所示。</p><p> 圖1 水平位移觀測點(diǎn)的安排</p><p> 3.2基礎(chǔ)基坑監(jiān)測設(shè)施</p><p> 根據(jù)《工程測量標(biāo)準(zhǔn)》,為滿足建設(shè)安全設(shè)防要求,項(xiàng)目建設(shè)
88、的基礎(chǔ)基坑工程用途總監(jiān)測水平位移站TOPCOM GTS 701。沉降觀測使用級別瀏覽器TOPCOM AT G2。沉降監(jiān)測點(diǎn)的高程可能錯(cuò)誤不應(yīng)大于±0.2毫米,并在相鄰的變形監(jiān)測點(diǎn)的高程差異錯(cuò)誤不應(yīng)大于0.13毫米(常等人,2005)。</p><p><b> 3.3測控安全值</b></p><p> 根據(jù)標(biāo)準(zhǔn)的項(xiàng)目和安全價(jià)值的確定原則可知,基坑工程的
89、安全值應(yīng)按以下方式確定:基坑周圍的水平位移不超過40毫米,位移速度不能大于5毫米/天;道路沉降值不超過30毫米,且沉降速度不能大于2毫米/天;鄰近建筑物的沉降與傾斜率,為附近的兩個(gè)測試點(diǎn)的最大沉降差異的3‰以下。</p><p> 4、基坑的監(jiān)測結(jié)果與分析</p><p> 基坑開挖和基礎(chǔ)建設(shè)后,監(jiān)測結(jié)果被記錄和安排,基坑及時(shí)預(yù)警分析了。時(shí)間歷史 曲線(見圖表2—圖表9),對應(yīng)的初期包
90、括四個(gè)階段(挖掘深度是約4米)的第一層開挖和(挖掘深度是約6米)的第二層開挖,第三層是全深度挖掘和拆除支撐和保障體系。</p><p> 4.1水平位移監(jiān)測與分析</p><p> 水平位移監(jiān)測密封梁的支持、保護(hù)水平位移監(jiān)測結(jié)果的支持及保護(hù)基坑周圍結(jié)構(gòu)基坑結(jié)構(gòu)所示圖2、圖5。水平位移時(shí)間歷史曲線顯示水平位移的外圍設(shè)備的支持和保護(hù)系統(tǒng)的中短期快速增加,然后變得逐漸穩(wěn)定。</p>
91、;<p> 水平位移時(shí)間歷史曲線還表示水平位移的AB節(jié)是比較大的在S5、S4、S3位置處,在CD節(jié)分別為32.6毫米、25.6毫米、27.5毫米、33.0毫米、40.8毫米。其中,位置S5的位移達(dá)到安全值中,位置S13接近安全值。測試組時(shí)及時(shí)提交測試結(jié)果,作出風(fēng)險(xiǎn)提示下給出警告,最后提出的支持和保護(hù)的結(jié)構(gòu)處理方案。</p><p> 圖1 在AD段中水平位移監(jiān)測的支持
92、 圖2在AB段水平位移監(jiān)測的支持和 和保護(hù)歷史時(shí)間圖表 保護(hù)時(shí)間歷史圖表</p><p> 圖3 在BC段中水平位移監(jiān)測的支持和 圖3 在CD段中水平位移監(jiān)測的支持和保護(hù)</p><p> 保護(hù)措施歷史時(shí)間表 歷史時(shí)間表<
93、/p><p> 4.2基坑的傾斜監(jiān)測與分析</p><p> 從基礎(chǔ)開挖拆除支撐和保障體系每個(gè)早期階段,傾向率在短期內(nèi)增加快速,而逐漸變得穩(wěn)定。這種傾向觀察到第二季、第三季度和第四季度的值分別是1.18‰、1.05‰、0.86‰ 和其他觀察到的值較小,觀察到的值發(fā)展迅速當(dāng)拆除支持,如圖6和圖7中所示。為保證現(xiàn)場施工安全,測量結(jié)果已提交施工組織</p><p> 圖
94、6在AB段近建筑物傾斜監(jiān)測的 圖7在BC、CD段近建筑物傾斜監(jiān)測的 </p><p> 歷史時(shí)間表 歷史時(shí)間表</p><p> 4.3監(jiān)測和基坑沉降分析</p><p> 從基礎(chǔ)開挖拆除支撐和保障體系每個(gè)早期階段,在短期內(nèi)解決增加快速,然后逐步穩(wěn)定和拆除,在支持后快速增加。沉降觀察的C
95、2、C3、C4分別有16.5米、15.5米,各自的其他的觀察所得的值很小,如圖所示,在圖表8和右面的13.2萬。為安全起見,測量結(jié)果已提交施工組織。</p><p> 圖8 在AB、AD段沉降的監(jiān)測的道路 圖9 在BC、CD段沉降的監(jiān)測的道路</p><p> 的歷史時(shí)間表 的歷史時(shí)間表<
96、/p><p> 4.4預(yù)警管理與安全控制</p><p> 基坑安全監(jiān)測過程是提前確定顯示器警告值合理根據(jù)基坑支護(hù)計(jì)算安全監(jiān)督的一項(xiàng)重要工作。如果監(jiān)視器警告值是在中小型或太小,它可以使基礎(chǔ)坑管理不利的影響。當(dāng)顯示器價(jià)值達(dá)到或接近的安全值時(shí),它將盡快實(shí)施安全早期警告的計(jì)劃。監(jiān)測人員應(yīng)及時(shí)、預(yù)警文檔發(fā)送給發(fā)展組織和監(jiān)理單位,并通知建設(shè)單位、設(shè)計(jì)單位。建設(shè)單位要求相關(guān)的人員進(jìn)行現(xiàn)場調(diào)查、及時(shí)協(xié)調(diào)
97、組織、制訂科學(xué)有效的技術(shù)措施和控制基坑的安全。一方面它應(yīng)嚴(yán)格監(jiān)測及預(yù)警的現(xiàn)場,另一方面它還要求施工單位進(jìn)行基坑工程施工過程中規(guī)定和執(zhí)行加固處理推遲到技術(shù)的程序。</p><p> 在基坑安全監(jiān)測的過程中,道路沉降及監(jiān)測值的鄰近建筑物傾斜應(yīng)提供警告值?;铀轿灰朴^測,位移增加快時(shí)挖(深度為4.2米)的第一層和發(fā)展速度是迅速。對于有增加的趨勢是明顯的觀察頻率增加部分觀測點(diǎn)以傾斜觀測,因此基坑發(fā)會(huì)出風(fēng)險(xiǎn)警告。在擬議
98、的計(jì)劃中,加強(qiáng)措施通過支持和保護(hù)系統(tǒng),不但使得支撐保護(hù)強(qiáng)度增加,且這些都有很好的地基基坑穩(wěn)定性。其次,在第二次挖掘和全面挖掘的進(jìn)行中進(jìn)行強(qiáng)化支持后,運(yùn)動(dòng)是穩(wěn)定的。但拆除支持后,基坑水平位移增加迅速再一次,其中顯示的加強(qiáng)支持,有效性和確認(rèn)的必要性及基坑安全監(jiān)測的科學(xué)性。</p><p><b> 5、結(jié)論</b></p><p> 通過對相鄰建筑基坑監(jiān)測進(jìn)行及時(shí)的水
99、平位移、沉降和傾斜的監(jiān)測、安全控制,就能夠科學(xué)有效地為項(xiàng)目基坑順利施工提供保障(朱,2006)。項(xiàng)目建設(shè)進(jìn)展情況和監(jiān)測數(shù)據(jù)的分析可以及時(shí)有效地獲取安全預(yù)警,并實(shí)現(xiàn)科學(xué)、信息化的建設(shè),同時(shí)采用有效的技術(shù)手段對待支持和保護(hù)基坑監(jiān)測數(shù)據(jù)結(jié)構(gòu),可以避免人身傷害和財(cái)產(chǎn)損失,從而有效地創(chuàng)建的深基坑滑坡的和防止相鄰建筑物傾斜和沉降的道路,保證工作的順利開展(李等,1999)。借助于有效地監(jiān)測基礎(chǔ)坑和有效性測試的支持和保護(hù)的基礎(chǔ)結(jié)構(gòu)可以減少設(shè)計(jì)錯(cuò)誤引起
100、的地基基坑抖動(dòng)。例如在S5部分基坑的支持和保護(hù)結(jié)構(gòu)設(shè)計(jì)的項(xiàng)目中可能增加錨桿數(shù)量或使用預(yù)應(yīng)力錨索桿。因此,基坑的基礎(chǔ)施工安全控制方法是值得進(jìn)行推廣與廣泛應(yīng)用。</p><p> 因此,在深基坑安全監(jiān)測工作中,由于工程時(shí)間較長、所需儀器要求高精度的特點(diǎn)和必須及時(shí)進(jìn)行數(shù)據(jù)分析和風(fēng)險(xiǎn)預(yù)警的需求,監(jiān)測安全監(jiān)測工作就存在著很大的困難。隨著科學(xué)研究和深基坑工程施工安全意識的提高,基坑監(jiān)測有可能進(jìn)一步被制度化、規(guī)范化和安全化。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深基坑施工中的安全風(fēng)險(xiǎn)預(yù)警研究.pdf
- 深基坑施工中的安全風(fēng)險(xiǎn)預(yù)警研究(1)
- 深基坑支護(hù)的安全施工及監(jiān)測管理
- 鄰近建筑物深基坑施工與監(jiān)測
- 9.7深基坑施工監(jiān)測技術(shù)
- 9.7深基坑施工監(jiān)測技術(shù)
- 深基坑模擬分析和施工監(jiān)測研究.pdf
- 地鐵工程深基坑施工安全監(jiān)測管理研究.pdf
- 建筑工程深基坑施工探析
- 淺談建筑施工深基坑支護(hù)技術(shù)
- 高層建筑深基坑支護(hù)施工
- 試析深基坑開挖施工變形監(jiān)測的監(jiān)理
- 淺議建筑施工深基坑支護(hù)技術(shù)
- 建筑深基坑支護(hù)施工控制
- 深基坑支護(hù)工程施工監(jiān)測技術(shù)
- 淺談建筑施工深基坑支護(hù)技術(shù)
- 深基坑施工安全方案--頂管
- 11深基坑施工安全管理規(guī)定
- 11深基坑施工安全管理規(guī)定
- 淺談建筑深基坑工程的施工監(jiān)理
評論
0/150
提交評論