外文翻譯---在全面微油點(diǎn)火燃燒器中給煤率對(duì)煙煤燃燒的影響_第1頁(yè)
已閱讀1頁(yè),還剩21頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  本科畢業(yè)論文</b></p><p><b>  外文文獻(xiàn)及譯文</b></p><p>  文獻(xiàn)、資料題目:Influence of Coal-feed Rates on Bituminous Coal Ignition in A Full-scaleTiny-oil Ignition Burner</p&g

2、t;<p>  文獻(xiàn)、資料來(lái)源:期 刊</p><p>  文獻(xiàn)、資料發(fā)表(出版)日期:2009.8.5</p><p>  院 (部): 熱能工程學(xué)院</p><p>  專 業(yè): 熱能與動(dòng)力工程</p><p>  班 級(jí): 熱動(dòng)073</p><p>  姓 名: 仲明凱<

3、/p><p>  學(xué) 號(hào): 2007031271</p><p><b>  指導(dǎo)教師: 楊冬</b></p><p>  翻譯日期: 2011.3.31</p><p><b>  外文文獻(xiàn)</b></p><p>  Influence of Coal-feed Rat

4、es on Bituminous Coal Ignition in A Full-scale</p><p>  Tiny-oil Ignition Burner</p><p>  A B S T RACT</p><p>  A tiny-oil ignition burner has been proposed to reduce oil consumptio

5、n during the firing-up process and partial-load operations. To investigate the influence of different feed rates on bituminous coal ignition in the tiny-oil ignition burner, full-scale reacting-flow experiments were

6、performed on an experimental setup.The ignition burner was identical to that normally used in an 800-MWe utility boiler. Gas temperature distributions in the burner were obtained at coal-feed rates of 2, 3, 4, a</p>

7、;<p>  Key words: Tiny-oil ignition burner ;Coal-burning utility boiler;Coal-feed rates</p><p>  1. Introduction</p><p>  To fire-up a boiler, oil is primarily used to pre-heat the combus

8、tion chamber of a furnace bringing it to its operating temperature.Generally, oil is delivered under high pressure by an oil-gun with a delivery capacity of about 1 tonne/h. Therefore, in the initial firingup process of

9、a bituminous coal-fired 300 MWe utility boiler, about 100 tonnes of fuel oil would be consumed. Concerns over increasing economic costs in pulverized coal-fired power stations arising from oil consumed in the firing</

10、p><p>  An alternative tiny-oil ignition burner has been developed and tiny-oil ignition, centrally fuel-rich burners proposed (see Fig. 1). The burner features two oil-guns arranged in the central pipe and the

11、 firing-up process is summarized as follows. Atomized oil from one oil-gun, called the main oil-gun, ignites and burns in an adiabatic chamber. Subsequently, an oil flame ignites the atomized oil from the other oil-gun,

12、called the auxiliary oil-gun. Cone separators are installed in the primary air</p><p>  2. Experimental set-up</p><p>  Fig. 1 shows the tiny-oil ignition apparatus. The ignition burner was iden

13、tical to the burner that had been used in an 800-MWe utility boiler and its operation is briefly described as follows. The feeder supplies pulverized coal by primary air from the blower. The pulverized coal is then carri

14、ed to the tiny-oil ignition burner by primary air. Oil is drawn from the oil tank and sent to the main and auxiliary oil-guns atomizing the oil mechanically and by air. Although compressed air enters the oi</p>&l

15、t;p>  All gas temperatures were measured at the center of the burner as well as the exits of the first and the second combustion chambers. Ash samples were sampled at the exit of the tiny-oil ignition burner. Gases we

16、re sampled using a water-cooled stainless steel probe and analyzed online on a Testo 350M instrument [5]. The probe, consisting primarily of a water-inlet pipe, water-outlet pipe, sampling tube, outer pipe and supporting

17、 components, was bracket-mounted</p><p>  at the exit of the burner. A sample of the high-temperature gas is collected in the sampling tube and cooled by high pressure cool water delivered through the water-

18、inlet pipe cooling the sampling tube and after heat change flows out via the water-outlet pipe. A water pump provided continuous water circulation. When gas enters the sampling tube, temperatures decease rapidly and the

19、pulverized coal stops burning. Samples are drawn up by a pump through filtrating devices into a Testo 350M gas anal</p><p>  The difference in pressure before and after ignition is called the burner resistan

20、ce. A static pressure method was used to measure ignition resistance at the position of the straight section (See Fig. 1). One end of the u-tube differential manometer was connected with a static pressure hole, and the o

21、ther end was open to atmospheric conditions.</p><p>  Table 1 lists equipment used along with their technical characteristics. Table 2 lists operating parameters. Table 3 lists the final analysis and other c

22、haracteristics of 0 # light diesel oil used in</p><p>  the experiments. Table 4 records the characteristics of the bituminous pulverized coal used in the experiments. The methods used to measure calorific v

23、alue, proximate analysis and ultimate analysis were in accordance with 213-2003, 212-2001 and 476-2001 of the Chinese standards code, respectively. The pulverized coal fineness was R90 = 9.2%, i.e. 90.8% of all particles

24、 pass through a 90 lm aperture sieve.</p><p>  3. Result and discussion</p><p>  3.1. The gas temperature distribution</p><p>  Fig. 2 depicts gas temperature profiles measured alon

25、g the burner center line; here x is the measured distance from the central pipe exit (See Fig. 1). Using the two oil-guns in the absence of coal during firing-up, gas temperatures decreased from 1044 _C to 856 _C with in

26、creasing distance. Most of the oil from both main and auxiliary oil-guns burnt out in the central pipe. High-temperature gas was then formed. As the gas flowed toward the burner nozzle, cold air diffuses into it resultin

27、g in a </p><p>  Fig. 3 shows the gas temperature profile measured at the exits of the first and second combustion chambers, at a radius of r1 and r2, respectively, from the center line of the burner (See Fi

28、g. 1). During firing-up with the two oil-guns operating in theabsence and then later in the presence of coal, gas temperatures were observed to be largest along the center line. As the radius increased, gas temperatures

29、decreased gradually. Wall temperatures of the first and the second combustion chambers wer</p><p>  During firing-up with the two oil-guns operating in the absence of coal, gas temperature distributions were

30、 similar at the exits of the first and the second combustion chamber. The oil-flow rate of auxiliary and main oil-guns was 65 and 35 kg/h, respectively (See Table 2). The oil-flow rate of auxiliary oil-gun was higher tha

31、n that main oil-gun. The released heat on the side of the auxiliary oilgun (r1 < 0 and r2 < 0) was higher than that on the side of the main oil-gun (r1 > 0 and r2 > 0). Henc</p><p>  burned out i

32、n the central pipe. As the gas flowed from the first combustion chamber to the second, it mixed with cold air, thus gradually decreasing gas temperatures.</p><p>  During firing-up with the two oil-guns in t

33、he presence of coal, the pulverized coal burned adequately releasing heat in the process. Gas temperatures at the second combustion chamber exit</p><p>  were higher than those at the first combustion chambe

34、r exit. By increasing coal-feed rates, more heat was absorbed by the pulverized coal thereby decreasing its temperature. At the same time,</p><p>  much more coal ignited; the released heat of combustion the

35、reby increased and in the process the temperature of the pulverized coal would then increase. When coal-feed rates increased from 2 to</p><p>  4 tonnes/h, the released heat of combustion is more than the ab

36、sorbed heat. Thus at equivalent measuring points at the exits of the first and second combustion chambers and on the burner center line (see Fig. 2) gas temperatures gradually increased. When the coal-feed rate was incre

37、ased to 5 tonnes/h, the released heat from coal combustion was less than the absorbed heat. Thus gas temperatures at equivalent points decreased. However, pulverized coal can be successfully ignited. </p><p>

38、;  Oil from the main oil-gun was ignited by a high-energy igniter and burnt in an adiabatic chamber. Subsequently, the oil flame formed by the main oil-gun ignited the atomized oil from the auxiliary oil-gun. Afterward,

39、the igniter was closed, and the oil flamewas maintained by the two oil-guns and burned steadily. During firing-up using the two oil-guns in the presence of coal, instantaneous ignition was achieved by the oil flame and a

40、 steady burn of the pulverized coal developed. The flame formed</p><p>  3.2. Char burnout and release rate of C and H at the exit of the burner</p><p>  Fig. 5 shows the char burnout and releas

41、e rate of C and H at the exit of the tiny-oil ignition burner. Char burnout was calculated using</p><p>  ψ=[1-(wk/wx)]/(1-wk)</p><p>  where w is the coal burnout factor, wk is the ash weight f

42、raction in the input coal, and wx is the ash weight fraction in the char sample.</p><p>  βis the percentage release of components (C and H), which was</p><p>  calculated by</p><p>

43、;  β=1-[(wix/wik)(wk/wx)</p><p>  where wix is the weight percentage of the species of interest in the char sample and wik is the weight percentage of the species of interest in the input coal [6].</p>

44、<p>  The distributions of char burnout and release rates of C and H were similar at the different coal-feed rates. The char burnout and the release rates of C and H were largest along the burner center; as the ra

45、dius increased, they decreased with the increase of coal-feed rates. At the center of the burner (r2 = 0), char burnout and release rates of C and H decreased from 83%, 81%, 95% to 75%, 72%, 87% as coal-feed rates increa

46、sed from 2 to 5 tonnes/h.</p><p>  3.3. Gas compositions and the burner resistance</p><p>  Table 5 lists gas compositions at the center of the burner exit as well as the burner resistance. For

47、coal-feed rates of 2, 3, 4, 5 tonnes/ h, O2 concentrations were in the range 0.01–0.04% and CO concentrations were more than 10,000 ppm. The O2 concentration at the center point of the burner exit was almost exhausted. W

48、hen the primary air temperature and velocity were 15 _C and 23 m/s, respectively, with oil-flow rate at 100 kg/h, the burner resistance while the two oil-guns were in operation i</p><p>  3.4. Consumed oil&l

49、t;/p><p>  Using the tiny-oil ignition burner, total oil-flow rate decreased from 1000 to 100 kg/h, thus saving 90% of the oil usually consumed in the firing-up process.</p><p>  4. Conclusion</

50、p><p>  (1) When the primary temperature and velocity air were 15 _C and 23 m/s, respectively, ignition was successful with an oil-flow rate of 100 kg/h and the bituminous coal-feed rate was increased from 2 to

51、 5 tonnes/h. Wall temperatures of the first and the second combustion chambers were less than 116 _C and 127 _C, respectively. At the low temperature, the burner wall was safe. O2 concentrations at the exit of the burner

52、 were 0.01–0.04%. During firing-up, the burner resistance increased to 190 Pa </p><p>  (2) Temperatures along the center line of the burner gradually increased along the direction of the primary air flow in

53、 the presence of coal. As coal-feed rates increased from 2 to 4 tonnes/h, gas temperatures at equivalent points at the exits of the first and second combustion chambers and on the center line increased gradually. A furth

54、er increase of the coal-feed rate to 5 tonnes/h decreased temperatures at these points.</p><p>  (3) Distributions of char burnout and release rates of C and H were similar for different coal-feed rates; as

55、the radius increased, they decreased with the increase of coal-feed rates. Finally, increasing coal-feed rates decreased char burnout and release rates of C and H at equivalent points at the exits.</p><p>  

56、Acknowledgements </p><p>  This work was supported by the Hi-Tech Research and Development Program of China(Contract No.2007AA05Z301), Post-doctoral Foundation of Heilongjiang Province (LRB07-216), Heilongji

57、ang Province via 2005 Key Projects (Contract No. GC05A314), and the Hi-Tech Research and Development Program of China (863 program) (Contract No.2006AA05Z321).</p><p>  References</p><p>  [1] M

58、asaya S, Kaoru M, Koichi T, Oleg PS, Masao S, Masakazu N. Stabilization of pulverized coal combustion by plasma assit. Thin Solid Films 2002;407:186–91.</p><p>  [2] Kanilo PM, Kazanesev VI, Rasyuk NI, Schun

59、emann K, Vavriv DM. Microwave plasma combustion of coal. Fuel 2003;82:187–93.</p><p>  [3] Zhang XY, Luo ZB, Zhang SK, Zou GW, Jiang BH. Application testing and study of plasma combustion technology in coal

60、fired boilers with double inlet and outlet tube mill and whirl burner. China Power 2003;36:25–9 [in Chinese].</p><p>  [4] Li WJ, Cen KF, Zheng CG, Zhou JH, Cao XY. Induction-heating of pulverized coal strea

61、m. Fuel 2004;83:2103–7.</p><p>  [5] Li ZQ, Jing JP, Chen ZC, Ren F, Xu B, Wei HD, et al. Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal ut

62、ility boiler. Combust Sci Technol 2008;180(7):1370–94.</p><p>  [6] Costa M, Silva P, Azevedo JLT. Measurements of gas species, temperature, and char burnout in a low-NOx pulverized-coal-fired utility boiler

63、. Combust Sci Technol 2003;175:271–89.</p><p><b>  中文譯文:</b></p><p>  在全面微油點(diǎn)火燃燒器中給煤率對(duì)煙煤燃燒的影響</p><p><b>  摘要:</b></p><p>  微油點(diǎn)火燃燒器在冷爐啟動(dòng)和低負(fù)荷穩(wěn)燃中減少油

64、耗的方法已經(jīng)被建議。為了研究不同給煤率對(duì)微油燃燒器點(diǎn)燃煙煤的影響,在設(shè)計(jì)的實(shí)驗(yàn)臺(tái)上對(duì)燃燒器全面流場(chǎng)進(jìn)行了實(shí)驗(yàn)研究。點(diǎn)火燃燒器同樣的被廣泛應(yīng)用于800WMe的電站鍋爐。分別得到了在給煤速率為2t/h、3t/h、4t/h、5t/h時(shí)燃燒器內(nèi)的溫度分布。焦炭燃燒和揮發(fā)分的析出能在燃燒器噴嘴出口被觀測(cè)到。對(duì)燃燒器中心的氣體成份像O2、CO2進(jìn)行了測(cè)量,獲得了燃燒器內(nèi)的阻力變化情況。通過(guò)使用新型的油槍技術(shù),使得在點(diǎn)火過(guò)程中相對(duì)原來(lái)的油耗量可以減少

65、百分之九十。</p><p>  關(guān)鍵詞:微油點(diǎn)火燃燒器、燃煤電站鍋爐、給煤率</p><p><b>  1簡(jiǎn)介</b></p><p>  點(diǎn)燃鍋爐時(shí),油主要被用來(lái)預(yù)熱燃燒室的內(nèi)壁,以使之達(dá)到其相應(yīng)的運(yùn)行溫度。通常來(lái)說(shuō),油通過(guò)輸送容量為1噸/小時(shí)的油槍在高壓下被釋放出來(lái)。因此,在最初的點(diǎn)火過(guò)程中,300MWe的燃煤鍋爐大約有100噸的燃料油

66、將會(huì)被消耗掉。在燃煤電廠中,鍋爐冷爐啟動(dòng)和低負(fù)荷穩(wěn)燃中的石油消耗使得經(jīng)濟(jì)成本增加,這就增加了我們?cè)陂_發(fā)無(wú)油和微油點(diǎn)火燃燒器方面的興趣。Masaya以及許多科研人員已經(jīng)研究并報(bào)道了有關(guān)無(wú)油點(diǎn)火燃燒器的不同成果。</p><p>  【1】研究煤粉通過(guò)使用活性組分燃燒器的穩(wěn)定燃燒情況</p><p>  【2】使用微波煤粉鍋爐來(lái)研究煤粉的點(diǎn)火和燃燒</p><p>  

67、【3】描述在煤粉燃燒鍋爐中關(guān)于等離子點(diǎn)火技術(shù)的應(yīng)用。然而,對(duì)于這些燃燒器,存在著在擴(kuò)大燃燒器容積和運(yùn)行期間需要經(jīng)常維修這兩個(gè)主要的問(wèn)題</p><p>  【4】研究感應(yīng)加熱點(diǎn)燃煤粉流。感應(yīng)加熱可以提供可靠的、方便的能源去點(diǎn)燃煤粉流,但是這種技術(shù)先前還沒有報(bào)道過(guò)被應(yīng)用于任何的電站鍋爐中。</p><p>  另一種微油點(diǎn)火燃燒器已經(jīng)被開發(fā)并用來(lái)點(diǎn)火,并計(jì)劃應(yīng)用于中心燃料豐富的燃燒器內(nèi)(見圖

68、1)。燃燒器在中央導(dǎo)管處安置的兩條油槍的作用很大。點(diǎn)火過(guò)程依下列各項(xiàng)被總結(jié)出來(lái):霧化的油從一個(gè)油槍中噴出,這個(gè)油槍叫做主油槍。在絕熱室內(nèi)進(jìn)行點(diǎn)火和燃燒。隨后,燃油被點(diǎn)燃。從另一個(gè)油槍中噴出霧化的石油,這根油槍叫做輔助油槍。錐形燃燒器安裝在輸送空氣和煤的主管道中,以用來(lái)聚集煤粉使之進(jìn)入燃燒器的中心區(qū)域。燃料豐富的一次風(fēng)煤混合物進(jìn)入第一燃燒室,據(jù)此,富燃料一次風(fēng)煤混合物被來(lái)自主油槍和輔助油槍的高溫火焰所點(diǎn)燃。然后,來(lái)自第一燃燒室的燃燒著的煤

69、粉和石油火焰直接進(jìn)入第二燃燒室,在這里煤被點(diǎn)燃。在鍋爐被點(diǎn)燃后,主油槍和輔助油槍關(guān)閉。與此同時(shí),燃燒器調(diào)整開關(guān),成為一個(gè)富燃料中心燃燒器。</p><p>  【5】燃燒效率高和低氮氧化物排放的特點(diǎn)在全面微油點(diǎn)火燃燒器中給煤率對(duì)煙煤燃燒的影響已經(jīng)被研究。</p><p><b>  圖1 實(shí)驗(yàn)裝置</b></p><p><b>  

70、2.實(shí)驗(yàn)裝置</b></p><p>  圖1表示微油點(diǎn)火裝置,點(diǎn)火燃燒器同樣的已經(jīng)被應(yīng)用于800MWe的電站鍋爐的中。同時(shí),它的操作被簡(jiǎn)述如下:給煤機(jī)通過(guò)送風(fēng)機(jī)提供的一次風(fēng)補(bǔ)給煤粉,與此同時(shí),煤粉被一次風(fēng)攜帶到微油點(diǎn)火燃燒器內(nèi)。油從油箱內(nèi)被帶出到主油槍和輔助油槍,在這里通過(guò)空氣機(jī)械霧化。壓縮空氣雖然進(jìn)入油槍,但一小部分的油在燃燒中還是被消耗掉。主體則通過(guò)另一臺(tái)送風(fēng)機(jī)提供。煤粉在一次風(fēng)管道中被點(diǎn)燃,實(shí)

71、驗(yàn)裝置中沒有分離進(jìn)入內(nèi)部和外部的二次風(fēng)。</p><p>  所有氣體溫度都在燃燒器的中心以及第一燃燒室和第二燃燒室的出口被測(cè)量出?;覙悠吩谖⒂土奎c(diǎn)火燃燒器的出口被提取。氣體通過(guò)使用水冷不銹鋼探針在Testo350M儀器上在線分析,抽取樣品探針,主要包括一個(gè)進(jìn)水管、出水管、收集管、外管以及支持組件,在燃燒器的出口展開。被抽取的高溫氣體被收集到收集管內(nèi),并被高壓冷卻水冷卻。通過(guò)進(jìn)水管冷卻收集管,同時(shí)熱量改變后通過(guò)出

72、水管導(dǎo)出,水泵提供連續(xù)的水循環(huán)。當(dāng)氣體進(jìn)入收集管,溫度快速下降,同時(shí)煤粉停止燃燒。樣品通過(guò)過(guò)濾設(shè)備進(jìn)入Testo350M氣體分析儀進(jìn)行分析整合。對(duì)于每種物質(zhì)準(zhǔn)確測(cè)量分析包括百分之一的氧氣和百分之五的一氧化碳。每種傳感器在測(cè)量前已經(jīng)被校準(zhǔn)。在這個(gè)試驗(yàn)中二氧化碳的含量為10000ppm。</p><p>  燃燒器點(diǎn)火之前和點(diǎn)火之后所表現(xiàn)出的不同壓力稱為燃燒器阻力。一種靜壓力的方法被用來(lái)測(cè)量直區(qū)段位置的點(diǎn)火阻力(見圖

73、1)。微分壓力計(jì)U型導(dǎo)管的一端與一個(gè)靜壓力孔連接,而另一端則是直接與大氣相通。</p><p><b>  表1</b></p><p><b>  設(shè)備使用的技術(shù)特點(diǎn)</b></p><p>  表1列出了所用到的設(shè)備連同他們的設(shè)備技術(shù)特點(diǎn)。表2列出了其操作參數(shù)。表3列出了在實(shí)驗(yàn)中所用到的輕柴油的最終分析以及其他特性。表

74、4記錄了被應(yīng)用于實(shí)驗(yàn)中的煙煤煤粉的性質(zhì)。這種方法被用來(lái)測(cè)量發(fā)熱量,先前的分析和最終分析分別都符合213-2003,212-2001和476-2001的國(guó)家標(biāo)準(zhǔn)。煤粉細(xì)度為百分之九點(diǎn)二的粒子能通過(guò)90微米的篩子。</p><p><b>  表2</b></p><p><b>  操作參數(shù)</b></p><p><

75、b>  表3</b></p><p>  試驗(yàn)用0號(hào)輕柴油的最終分析及其他特點(diǎn)</p><p><b>  表4</b></p><p>  試驗(yàn)用煙煤煤粉的特性</p><p><b>  3.結(jié)果和討論</b></p><p><b>  3.

76、1氣體溫度分布</b></p><p>  圖2描述了沿著燃燒器中心線所測(cè)量的氣體溫度的分布狀態(tài)。這里x代表從中心管出口所測(cè)量的距離(見圖1)。在無(wú)煤點(diǎn)火時(shí)使用的兩條油槍,隨著距離的增加,氣體的溫度從1044攝氏度降至856攝氏度。來(lái)自主油槍和輔助油槍中的大部分油在中心管中燃燒。高溫氣體在此形成了。當(dāng)氣體流動(dòng)到燃燒器噴嘴處,冷空氣隨之摻混到氣體中,使氣體的溫度逐漸的降低。冷爐啟動(dòng)中有煤時(shí)使用兩個(gè)油槍,

77、高溫油火焰持續(xù)燃燒點(diǎn)燃煤粉使之放出熱量。研究結(jié)果:氣體溫度沿著一次風(fēng)流動(dòng)的方向及沿著燃燒器中心線的方向增加。</p><p>  圖3表示:氣體從燃燒器中心線處半徑分別為r1和r2時(shí)第一、第二燃燒室出口處被測(cè)量的溫度變化曲線(見圖1)。在點(diǎn)火期間,隨著兩條油槍在無(wú)煤狀態(tài)下運(yùn)行以及在有煤狀態(tài)下運(yùn)行時(shí),觀察氣體的溫度沿著中心線方向一直變至最大。隨著半徑增加,氣體溫度逐漸的減小,第一、第二燃燒室的墻壁溫度不到116攝氏

78、度和127攝氏度。在低溫時(shí),燃燒器的墻體是安全的。</p><p>  兩支油槍在缺煤運(yùn)行操作時(shí)點(diǎn)火期間,氣體溫度在第一和第二燃燒器出口處的分布時(shí)相近的。油在輔助油槍和主油槍里的流量分別為65千克/小時(shí)和35千克/小時(shí)(見表2)。油在輔助油槍的流量要比在主油槍中的流量大。輔助油槍附近所釋放出的熱量要比主油槍附近多釋放出的熱量要多。因此,在輔助油槍附近的溫度要比主油槍附近的溫度高。例如:在第一燃燒室出口處輔助油槍打

79、開了,在r1分別為-57毫米和-114毫米處的溫度分別為1005攝氏度和767攝氏度,與此同時(shí),在半徑r1分別為57毫米和114毫米處,主油槍被打開,氣體的溫度分別為601攝氏度和203攝氏度。氣體溫度在第二燃燒室出口處要比第一燃燒室出口處低一些。主油槍和輔助油槍內(nèi)大部分的油都在中心導(dǎo)管處被燃燒。當(dāng)氣體從第一燃燒室進(jìn)入到第二燃燒室時(shí),它們與冷空氣混合,如此,氣體的溫度逐漸的減小。</p><p>  圖2 沿燃燒

80、器中心線測(cè)量的氣體溫度的分布曲線</p><p>  兩支油槍在缺煤狀態(tài)下點(diǎn)火,煤粉充分燃燒并釋放出熱量。第二燃燒室出口處的這些氣體溫度要高于第一燃燒室出口處的氣體溫度。通過(guò)增加給煤率,更多的熱量在煙煤燃燒中被吸收,以用來(lái)減小其溫度,與此同時(shí),點(diǎn)燃更多的煤,燃燒所釋放的熱量增加,同時(shí)在這個(gè)過(guò)程中煤粉的溫度也會(huì)增加。當(dāng)給煤率從2噸/小時(shí)增加到4噸/小時(shí)時(shí),燃燒所釋放的熱量大于其所吸收的熱量。從而,在第一和第二燃燒室

81、出口處以及燃燒器中心線處相同的測(cè)量點(diǎn)處,氣體的溫度逐漸增加。當(dāng)給煤率增加到5噸/小時(shí),煤燃燒所釋放出的熱量要比其所吸收的熱量要少。盡管如此,煙煤也可成功點(diǎn)火。</p><p>  來(lái)自主油槍中的燃油通過(guò)一個(gè)高能量點(diǎn)火器點(diǎn)火,并在一個(gè)絕熱燃燒器內(nèi)燃燒,隨后,通過(guò)主油槍點(diǎn)燃來(lái)自輔助油槍的霧化油,同時(shí)形成油狀火焰。然后,關(guān)閉點(diǎn)火器。燃油火焰通過(guò)兩支油槍的穩(wěn)定燃燒被保持。在冷爐啟動(dòng)時(shí)使用兩條在缺煤狀態(tài)下的油槍。冷爐啟動(dòng)和

82、低負(fù)荷穩(wěn)燃過(guò)程被完成了。通過(guò)兩支油槍和煤粉所形成的火焰是明亮穩(wěn)定的。圖4分別表示燃油和煤的燃燒火焰。</p><p>  圖3 第一燃燒室(a)和第二燃燒室(b)出口處氣體溫度的分布曲線</p><p>  3.2燃燒器出口處焦炭以及C、H的釋放率</p><p>  圖5顯示在微油量燃燒器出口處焦炭以及C、H的釋放率。焦炭燃燒計(jì)算:</p><

83、p>  ψ=[1-(wk/wx)]/(1-wk)</p><p>  這里ψ表示焦炭燃燒因素,Wk表示輸入煤灰質(zhì)量分?jǐn)?shù),Wx表示灰炭樣品的質(zhì)量分?jǐn)?shù)。</p><p>  β表示釋放的氣體成分的百分?jǐn)?shù)</p><p>  β=1-[(wix/wik)(wk/wx)</p><p>  這里wix表示焦炭中各成分的質(zhì)量分?jǐn)?shù),wik表示輸入煤

84、灰各成分的質(zhì)量分?jǐn)?shù)。</p><p>  在不同的給煤率下,焦炭和C、H的釋放率的分布狀態(tài)時(shí)相近的。沿著燃燒器的中心,焦炭和C、H的釋放率都是最大的;當(dāng)半徑增加,釋放率隨著給煤率的增加而減少。在燃燒器的中心處(r2=0),當(dāng)給煤率從2噸/小時(shí)增加到5噸/小時(shí),焦炭和C、H的釋放率從83%、81%、95%減小到75%、72%、87%。</p><p>  圖4在無(wú)煤狀態(tài)下(a)和給煤率為4噸

85、/小時(shí)狀態(tài)下(b)點(diǎn)燃兩條油槍時(shí)的所產(chǎn)生的火焰</p><p>  3.3氣體成分和燃燒器阻力</p><p>  表5列出了在燃燒器出口中心以及燃燒器的阻氣組成。對(duì)于2,3,4,5噸/小時(shí)煤進(jìn)給速度,氧氣濃度范圍在0.01-0.04%和二氧化碳濃度大于10,000 ppm。在燃燒器出口中心點(diǎn)氧氣濃度幾乎為零。當(dāng)一次空氣溫度和速度分別為15攝氏度和23米/ 秒,油流率在100公斤/小時(shí),燃

86、燒器的阻力,兩個(gè)油槍在無(wú)煤和有煤狀態(tài)下運(yùn)行時(shí)壓力增加190帕,在壓力為500,600,600,550帕?xí)r,給煤率分別2,3,4,5噸/小時(shí)。</p><p>  圖5 燃燒器出口處焦炭燃燒以及碳、氫揮發(fā)的分布圖</p><p><b>  3.4 油耗</b></p><p>  使用微油點(diǎn)火燃燒器,總的燃油流速?gòu)?000公斤/小時(shí)減小到100

87、公斤/小時(shí),從而節(jié)省通常在點(diǎn)火過(guò)程中所消耗的90%的油。</p><p>  表5 燃燒器出口中心點(diǎn)處的氣體組成以及燃燒器出口阻力</p><p><b>  4結(jié)論</b></p><p> ?。?)當(dāng)主空氣溫度和速度分別為15攝氏度和23米/秒,燃油流速為100千克/小時(shí)時(shí)點(diǎn)火成功,煙煤的給煤率從2噸/小時(shí)增加到5噸/小時(shí)。第一和第二燃燒室

88、的燃燒溫度分別低于116攝氏度和127攝氏度。在低溫下,燃燒器墻體是安全的。在燃燒器出口處的氧濃度分別為0.01-0.04%。在冷爐啟動(dòng)期間,燃燒器的阻力在無(wú)煤時(shí)增加到190帕,有煤時(shí)增加到500-600帕。在冷爐啟動(dòng)中可以節(jié)約百分之九十的通常油耗,顯示出顯著的經(jīng)濟(jì)效益。</p><p> ?。?)在有煤且沿著主空氣流動(dòng)的方向,沿中心線方向燃燒溫度逐漸升高。由于給煤率從2噸/小時(shí)增加到4噸/小時(shí),在第一和第二燃燒

89、室的出口和中線等值點(diǎn)位置處,氣體的溫度逐漸升高。在溫度下降到該點(diǎn)時(shí),給煤率進(jìn)一步增加到5噸/小時(shí)。</p><p>  (3)在不同給煤率下,焦炭與氫的釋放率分布狀態(tài)類似。隨著半徑的增加,給煤率的增加量將隨之下降。最后,在出口的等值點(diǎn)處,分別增加給煤率同時(shí)減小焦炭和碳、氫的釋放率。</p><p><b>  致謝</b></p><p>  

90、這項(xiàng)工作得到了中國(guó)國(guó)家高技術(shù)研究發(fā)展計(jì)劃(No.2007AA05Z301)、黑龍江省博士后基金會(huì)的支持。是2005黑龍江年重點(diǎn)項(xiàng)目(No. GC05A314)、國(guó)家高技術(shù)研究發(fā)展計(jì)劃項(xiàng)目(863計(jì)劃)(No.2006AA05Z321)。</p><p><b>  參考文獻(xiàn)</b></p><p>  [1] Masaya S, Kaoru M, Koichi T,

91、Oleg PS, Masao S, Masakazu N. Stabilization of</p><p>  pulverized coal combustion by plasma assit. Thin Solid Films 2002;407:186–91.</p><p>  [2] Kanilo PM, Kazanesev VI, Rasyuk NI, Schunemann

92、K, Vavriv DM. Microwave</p><p>  plasma combustion of coal. Fuel 2003;82:187–93.</p><p>  [3] Zhang XY, Luo ZB, Zhang SK, Zou GW, Jiang BH. Application testing and study ofplasma combustion tech

93、nology in coal fired boilers with double inlet and outlettube mill and whirl burner. China Power 2003;36:25–9 [in Chinese].</p><p>  [4] Li WJ, Cen KF, Zheng CG, Zhou JH, Cao XY. Induction-heating of pulveri

94、zed coal</p><p>  stream. Fuel 2004;83:2103–7.</p><p>  [5] Li ZQ, Jing JP, Chen ZC, Ren F, Xu B, Wei HD, et al. Combustion characteristics</p><p>  and NOx emissions of two kinds o

95、f swirl burners in a 300-MWe wall-fired</p><p>  pulverized-coal utility boiler. Combust Sci Technol 2008;180(7):1370–94.</p><p>  [6] Costa M, Silva P, Azevedo JLT. Measurements of gas species,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論