2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、<p>  Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China</p><p>  Z.C. Guo , Z.X. Fu</p><p>  http://www.elsevier.com/locat

2、e/energy</p><p>  中國鋼鐵行業(yè)的能源消費(fèi)現(xiàn)狀及節(jié)能措施</p><p>  Z.C. Guo , Z.X. Fu</p><p>  http://www.elsevier.com/locate/energy</p><p><b>  譯文正文:</b></p><p>  

3、中國鋼鐵行業(yè)的能源消費(fèi)現(xiàn)狀及節(jié)能措施生態(tài)與循環(huán)冶金實(shí)驗(yàn)室,北京科技大學(xué),北京100083,中華人民共和國</p><p>  國家多相復(fù)雜系統(tǒng)重點(diǎn)實(shí)驗(yàn)室,過程工程研究所,中國科學(xué)院,中華人民共和國</p><p><b>  摘要</b></p><p>  在本文中描述了一個關(guān)于中國鋼鐵行業(yè)能源消費(fèi)現(xiàn)狀和發(fā)展的關(guān)鍵問題的調(diào)查。明顯的中國20

4、06的粗鋼產(chǎn)量擴(kuò)大到41878.0萬公噸,約占世界粗鋼產(chǎn)量的43%。在中國鋼鐵工業(yè)仍是主要的高能耗、高污染產(chǎn)業(yè),約占全國能耗的15.2%,占全國廢水、廢氣總排放量的14%、固體廢氣物排放量的6%。由于能源利用效率低,平均每單位鋼材的生產(chǎn)的能源消耗要比發(fā)達(dá)國家高20%。然而,在過去幾年中國鋼鐵產(chǎn)業(yè)的能源利用率有明顯的改善,將來通過能源終端優(yōu)化利用可以實(shí)現(xiàn)有效的節(jié)能。最后,在中國的第11個五年計(jì)劃的經(jīng)濟(jì)政策方面也為鋼鐵產(chǎn)業(yè)提出了一些措施。&

5、lt;/p><p>  關(guān)鍵詞:鋼鐵行業(yè) 能源消耗 節(jié)能</p><p><b>  1 導(dǎo)言</b></p><p>  在中國經(jīng)濟(jì)發(fā)展過程中,鋼鐵行業(yè)長久的發(fā)揮著重要作用。在過去的幾十年,中國的鋼鐵行業(yè)增長迅速,超過日本,在1996年成為世界上最大的鋼鐵生產(chǎn)國。2006年,中國生產(chǎn)粗鋼達(dá)41878.00萬公噸,繼續(xù)保持世界第一的排

6、名。生產(chǎn)粗鋼約33517萬公噸的主要生產(chǎn)商占國內(nèi)粗鋼生產(chǎn)總量的80%,生產(chǎn)粗鋼約8361萬公噸的當(dāng)?shù)厣a(chǎn)者占國內(nèi)粗鋼生產(chǎn)總量的20%。在本文中,這些主要的生產(chǎn)商是我們研究的主要課題。</p><p>  雖然取得了這些成績,在主要鋼鐵生產(chǎn)國中,中國的能源利用率仍然是最低的,盡管隨著科學(xué)與技術(shù)的進(jìn)步,其鋼鐵產(chǎn)業(yè)總體技術(shù)水平有了很大的提高。一個典型的例子是連鑄技術(shù)的迅速采用。連鑄產(chǎn)量的份額已經(jīng)從1992年約占30%所

7、有鋼鐵生產(chǎn)增加到2004年的95.8%。同時,許多大公司用大規(guī)模、現(xiàn)代化的高爐和連鑄連軋?jiān)O(shè)備取代了老化的高爐、平爐爐和鋼錠腳輪。煉鐵可采取通過高爐過程或直接還原鐵和由鐵到鋼的轉(zhuǎn)變過程可以在吹氧轉(zhuǎn)爐中進(jìn)行或在電弧爐中進(jìn)行。</p><p>  隨著鋼鐵行業(yè)整體技術(shù)水平的提高,在過去的10年里,鋼鐵的產(chǎn)量得到了極大的提高。中國粗鋼表觀產(chǎn)量從1995年的9500萬公噸增長到了2006年的41878.0萬公噸,大約是19

8、95年的4.5倍以上,2000的3倍以上。因此,中國鋼鐵生產(chǎn)在世界鋼鐵生產(chǎn)中的份額從1995年的13%躍升至2006年的34%。這一增長預(yù)計(jì)將在未來由于國內(nèi)需求的持續(xù)增長而持續(xù)數(shù)年。</p><p>  眾所周知,鋼鐵工業(yè)是世界工業(yè)中能源消耗最大的。自1996年成為世界最大的鋼鐵生產(chǎn)商以來,隨著國內(nèi)需求的大幅增長,中國鋼鐵業(yè)成長迅速。這一增長與其能源消耗的增長趨勢是一致的。</p><p>

9、;  鋼鐵生產(chǎn)消耗大量的能源,特別是在發(fā)展中國家和過時的、低效的技術(shù)仍然比較普遍使用的經(jīng)濟(jì)轉(zhuǎn)型國家。最近幾年發(fā)展中國家鋼產(chǎn)量平均每年以6.6%的增速增長,并且由于在這些國家當(dāng)前鋼材的人均消費(fèi)水平低,預(yù)計(jì)將繼續(xù)以相似的水平增長。在工業(yè)化國家,鋼鐵平均人均消費(fèi)量超過425千克,而即使是重點(diǎn)鋼鐵生產(chǎn)的發(fā)展中國家,平均人均鋼材消費(fèi)量具有極低的80公斤(1995年)的平均消費(fèi)水平。</p><p>  大部分的中國鋼鐵工業(yè)

10、都是通過國有企業(yè)——一個專門為整個社會生產(chǎn)鋼鐵的體系發(fā)展而來的。因此,收集的中國鋼鐵生產(chǎn)能源消耗的數(shù)據(jù)也包含了其他直接和間接的與鋼鐵生產(chǎn)相關(guān)的各職能部門企業(yè)消耗的能源。此外,中國部分鋼鐵是小型鋼廠生產(chǎn)的,它們不向政府統(tǒng)計(jì)部門報(bào)告能源消耗數(shù)據(jù)。只有區(qū)分好這些數(shù)據(jù),中國的能源消耗值才能得到公正的評估,特別是當(dāng)我們將中國鋼鐵工業(yè)的能源消耗和能源強(qiáng)度與其他國家或特定的'最佳實(shí)踐'的范例比較的時候。我們注意到,即使有了這些調(diào)整,由

11、于統(tǒng)計(jì)報(bào)告的問題,數(shù)據(jù)還是有可能不準(zhǔn)確。</p><p>  本文的目的是提出一個有關(guān)中國鋼鐵產(chǎn)業(yè)發(fā)展的一些關(guān)鍵問題的調(diào)查,并介紹了其能源消耗狀況。就主要國家的鋼鐵消費(fèi)差異和中國在國際鋼鐵舞臺上的角色進(jìn)行了分析,中國鋼鐵產(chǎn)業(yè)的前景和為中國鋼鐵行業(yè)制定的措施也在本文中呈現(xiàn)了出來。對于世界來說,更好地了解以及讓中國更好地了解中國已經(jīng)開發(fā)或其它國家正在開發(fā)的更多的能源和原材料有效利用的途徑是非常重要的。筆者希望本文有助

12、于該行業(yè)在這些方面提高認(rèn)識。</p><p>  2 中國鋼鐵產(chǎn)業(yè)的能源消費(fèi)結(jié)構(gòu)</p><p>  眾所周知,中國的電力生產(chǎn)主要依賴煤炭,煤炭也是中國的鋼鐵工業(yè)中最重要的燃料。2004年,中國鋼鐵工業(yè)的能源消費(fèi)結(jié)構(gòu)中煤炭占69.90%,電力占26.40%,燃油占3.2%,天然氣占0.5%。煤炭不僅是最廣泛使用的燃料,在鋼鐵工業(yè)中它也和原料一樣重要,其余最必要的就是電力。這種燃料結(jié)構(gòu),提

13、高了單位產(chǎn)量的能耗,并且不可能在短期內(nèi)有很大變化。</p><p>  3 鋼鐵行業(yè)能源消費(fèi)情況</p><p>  在中國關(guān)鍵的鋼鐵生產(chǎn)商在鋼的制造和能源的消耗方面發(fā)揮著重要作用。2003年,中國10大鋼鐵企業(yè)生產(chǎn)了占中國鋼鐵產(chǎn)量三分之一以上的鋼鐵,其中最大的四個鋼鐵企業(yè)生產(chǎn)超過了20%。這意味著,許多先進(jìn)的技術(shù),早在中國鋼鐵行業(yè)存在,但目前行業(yè)的集中度限制了這些技術(shù)的應(yīng)用,一般來說降

14、低了能源利用效率。因此,鋼鐵工業(yè)仍然是最高的能源消費(fèi)者和污染生產(chǎn)者,約占全國能耗的15.2%,占全國廢水、廢氣總排放量的14%、固體廢氣物排放量的6%。</p><p>  圖3顯示了從1995年到2006年重點(diǎn)企業(yè)的能源消費(fèi)變化。在過去的十年里,鋼鐵工業(yè)的能源消費(fèi)量隨著鋼鐵產(chǎn)量的增長而迅速上升。2004年,中國總的鋼產(chǎn)量為27470萬噸,與2000年相比增長了107.7%,與1995年相比增長了184.2%。中

15、國的重點(diǎn)鋼鐵企業(yè)的能源消費(fèi)總量從2000年的96300萬噸飆升到2006年的197790萬噸,是2000年的兩倍多。然而, 2006年能源消費(fèi)上升趨勢減弱,比前一年降低6.6%。</p><p>  隨著許多新的技術(shù)和設(shè)備的應(yīng)用,在過去的幾十年里,每噸鋼鐵的能源消費(fèi)指標(biāo)明顯的下降了。2005年,中國的大、中型生產(chǎn)商的整體能源消費(fèi)量為每噸鋼741千克標(biāo)準(zhǔn)煤,比2003年每噸鋼930千克標(biāo)準(zhǔn)煤低20.3%。2006年

16、,每噸鋼綜合能耗繼續(xù)下降至645千克標(biāo)準(zhǔn)煤,可與之媲美的能耗也呈現(xiàn)出下降趨勢。</p><p>  從2000年到2006年每噸鋼用淡水量的變化如圖4所示。2006年,每噸鋼用淡水量為6.26立方米,比2005年低14.9%。2000年與2005年其它關(guān)于節(jié)能、節(jié)水環(huán)保的比較數(shù)據(jù)列于表1。可以看出,中國的鋼鐵工業(yè)的能源利用效率在過去幾年中明顯改善。</p><p>  4 幾個鋼鐵生產(chǎn)主

17、要過程中的能源消費(fèi)情況</p><p>  圖5顯示了從1995年到2005年鋼鐵生產(chǎn)幾個主要過程中能源消費(fèi)的變化。自1995年以來,高爐、電爐和軋鋼工序的能耗明顯下降,焦化、燒結(jié)和轉(zhuǎn)爐的相應(yīng)數(shù)值也略有下降。與2001年以前的幾年相比,目前高爐生產(chǎn)的能源消費(fèi)呈現(xiàn)增長趨勢,這是由于自2001年起煉鐵的原材料——如焦炭、煤炭成本的增加引起的。</p><p>  在幾個主要工序中,煉鐵工序的能

18、耗顯著高于其它工序。以2004年為例,如圖6所示,煉鐵工序的總能耗約占所有工序總能耗的70%,其中高爐39%、焦化11.9%、球化3.51%和燒結(jié)5.55%。其它工序只占一小部分能耗,約為30%,其中提供動力占12.5%、軋鋼占7.77%、電爐17.5%和轉(zhuǎn)爐2.22%。這意味著,煉鐵系統(tǒng)是任何鋼鐵工業(yè)節(jié)能工作的重要組成部分。</p><p>  5 中國鋼鐵工業(yè)能源消耗與國際水平的比較</p>

19、<p>  中國每噸鋼材的能源消費(fèi)比大多數(shù)先進(jìn)國家高。導(dǎo)致這種情況的一個原因是,中國的能源利用效率低。每單位鋼材的能源消耗量比其它先進(jìn)國家要高約20%。例如,與日本相比,中國大中型企業(yè)的能源消耗量為每噸鋼705千克標(biāo)準(zhǔn)煤,比日本的656千克標(biāo)準(zhǔn)煤要高7.5%。然而,中國小型生產(chǎn)單位能源消費(fèi)水平高達(dá)每噸鋼1045千克標(biāo)準(zhǔn)煤。</p><p>  中國鋼鐵業(yè)的整體能源效率仍然較低。重要原因之一是這些小型企業(yè)

20、的存在。表2顯示,先進(jìn)企業(yè)和小廠在能源消耗上存在著巨大的差異。只有少數(shù)大型鋼鐵企業(yè)已經(jīng)達(dá)到或甚至超過國際水平。因?yàn)檫@些先進(jìn)設(shè)備的輸出不能取得市場優(yōu)勢地位,中國鋼鐵工業(yè)平的平均能源消費(fèi)水平仍是尷尬的。</p><p>  第二個原因在中國存在小規(guī)模和分散的行業(yè)。2005年,有18個工廠粗鋼生產(chǎn)能力超過5公噸,占全國粗鋼總產(chǎn)量的46.36%。2004年,日本最大的四個粗鋼工廠生產(chǎn)占全國粗鋼總產(chǎn)量的73.22%,其中的

21、三個占61.09%。除了少數(shù)大型鋼鐵廠以外,中國的鋼鐵工業(yè)在技術(shù)、設(shè)備、節(jié)能、環(huán)保等方面都比較落后。第三個原因是,低回收及低效率循環(huán)使用二次能源資源導(dǎo)致更高的能量消耗。</p><p>  6 給中國鋼鐵工業(yè)的措施和政策建議</p><p>  6.1 擴(kuò)大干法熄焦技術(shù)</p><p>  傳統(tǒng)上,熱焦炭的熱量,從焦化室出來在950-1050℃的溫度,幾乎等于在

22、煉焦過程消耗熱量的30%—40%。采用干法熄焦技術(shù)可以使約80%焦炭顯熱得到回收。此外,在干熱淬火下一噸焦炭可產(chǎn)生約0.45—0.60噸3.9 MPa壓力的蒸汽。干法熄焦過程屬于節(jié)能、環(huán)保、無公害技術(shù)。利用干法熄焦,據(jù)估計(jì),焦炭轉(zhuǎn)鼓強(qiáng)度(M40)增加了3%—8%,而經(jīng)過二氧化碳反應(yīng)焦炭強(qiáng)度增加為3%—4%。此外,弱結(jié)合煤炭輸入量可提高10%,每噸焦炭可節(jié)約約0.38噸水。</p><p>  截至2005年底,干

23、法熄焦技術(shù)在中國鋼鐵行中使用的比例不到30%。截至2007年底,由于過去的兩年里自主創(chuàng)新的驅(qū)使,這項(xiàng)技術(shù)得到推廣發(fā)揮,其使用比例上升到45%?,F(xiàn)在,34套干熄焦裝置正在建設(shè),輸出焦炭約10158萬噸,占全國總產(chǎn)量的三分之一。</p><p>  6.2 擴(kuò)大煤氣余壓回收渦輪(TRT)技術(shù)</p><p>  高爐爐頂?shù)膲毫δ芸梢允褂脺u輪發(fā)電機(jī)組來發(fā)電。從理論上說,當(dāng)高爐爐頂煤氣壓力是80

24、千帕的時候,由余壓回收裝置產(chǎn)生的能量與消耗的能源是相當(dāng)?shù)摹.?dāng)煤氣壓力達(dá)到100千帕?xí)r,就可能獲得經(jīng)濟(jì)收益,特別是如果煤氣壓力大于120千帕,甚至可以實(shí)現(xiàn)更高的經(jīng)濟(jì)收益。在鋼鐵生產(chǎn)高爐路線,增加在高爐爐頂壓力是有利的,因?yàn)樗鼛砹四茉促Y源的回收。如果在煤氣凈化階段去除干燥的塵土,產(chǎn)生的電量將增加30%,如果煤氣溫度提高10℃,渦輪能力將提高約3%。如果采用煤氣余壓回收設(shè)備,估計(jì)有30%的能源可從高爐消耗的空氣中回收,煉鋼過程中的每噸鋼的能

25、源消耗能減少11千克標(biāo)準(zhǔn)煤。 </p><p>  截至2007年底,在中國裝有煤氣余壓回收技術(shù)的容量大于2000立方米的同爐有49座。未來,在中國的大型高爐中使用煤氣余壓回收技術(shù)將是廣泛和有力的。</p><p>  6.3 擴(kuò)大高爐噴煤技術(shù)的使用</p><p>  高爐噴煤的使用采用高爐路線煉鋼中的一個重要的創(chuàng)新優(yōu)化。另外,它是促使鋼鐵業(yè)在許多方面取得進(jìn)展的

26、一個強(qiáng)大的誘因,如優(yōu)化能源結(jié)構(gòu),節(jié)約能源,降低物質(zhì)消耗,降低成本等等。以煤代焦可以緩解由于節(jié)能措施造成的煉焦煤短缺憾的問題。此外,它可減少煉焦過程對環(huán)境的污染,同時也產(chǎn)生大量的煤和焦炭的價(jià)格之間的差額引起的經(jīng)濟(jì)回報(bào)。</p><p>  2007年,中國大中型鋼鐵企業(yè)高爐路線生產(chǎn)每噸鐵需要噴煤137千克,在2000年為每噸鐵118千克。在中國的一些大型高爐每噸鐵的噴煤量已經(jīng)超過了200千克。寶鋼的4350立方米能

27、力高爐就是一個例子。據(jù)估計(jì),2010年中國每噸高爐鐵的噴煤量將實(shí)現(xiàn)160公斤。</p><p>  6.4 取締低水平設(shè)備,引進(jìn)和發(fā)展新技術(shù)</p><p>  在過去數(shù)年,中國政府在取締低水平設(shè)備方面作出了巨大的努力。中國的小型鋼鐵企業(yè)的能耗高出大中型鋼鐵企業(yè)的1.5倍。中國實(shí)行的第11個五年計(jì)劃的節(jié)約減排政策使鋼鐵工業(yè)進(jìn)行了重組,其設(shè)備能力得以增強(qiáng),現(xiàn)代化步伐加快了,所有這些都產(chǎn)生了

28、巨大影響。</p><p>  2007年,中國容量超過2000立方米的高爐為63座,比2005年多17座,生產(chǎn)能力增加了35%。2007年容不得量為100噸的轉(zhuǎn)爐98座, 2005年多8座,生產(chǎn)能力增加了8%。 2007年,每噸鋼的整體能源消耗、淡水消耗、二氧化硫排放總量、煙塵排放總量、粉塵排放總量與2005相比分別下降了約8%、24%、4.5%、3%和4.5 %。</p>&

29、lt;p>  此外,中國的鋼鐵工業(yè)積極引進(jìn)和開發(fā)新技術(shù),如COREX工藝和C300熔化還原技術(shù)。</p><p>  6.5 在鋼鐵工業(yè)中創(chuàng)建循環(huán)經(jīng)濟(jì)鏈</p><p>  據(jù)認(rèn)為,在鋼鐵生產(chǎn)過程中可以發(fā)展三個循環(huán)經(jīng)濟(jì)鏈,目標(biāo)是實(shí)現(xiàn)零排放展。首先是煙氣的回收,這意味著不僅煤或焦炭,而且煙氣將由高爐、轉(zhuǎn)爐、均熱爐回收,以實(shí)現(xiàn)煙氣零排放的目標(biāo)。二是工業(yè)廢水的回收利用,這意味著淡水用量將

30、最小化,業(yè)廢水將被回收將使用一些處理設(shè)備回收。三是固體廢物材料的回收,這是對一些諸如生產(chǎn)過程中遺留下來的鐵礦石等原材料的綜合再利用的過程。</p><p>  中國的傳統(tǒng)發(fā)展模式,如投資規(guī)模龐大,不管有嚴(yán)重污染和低附加值的產(chǎn)品導(dǎo)致了中國在世界范圍內(nèi)位于產(chǎn)業(yè)結(jié)構(gòu)價(jià)值鏈的低端。這是造成中國高能源消耗的最重要原因。與發(fā)達(dá)國家相比,中國的劣質(zhì)設(shè)備和不能有效利用能源的工藝的使用導(dǎo)致了較低的能源利用效率。</p>

31、<p><b>  7 展望</b></p><p>  在過去的十年里,隨著鋼鐵行業(yè)的整體技術(shù)水平的提高,鋼鐵的生產(chǎn)有極大的提高。但是,在中國鋼鐵工業(yè)仍是主要的高耗能、高污染的產(chǎn)業(yè)之一。雖然在過去數(shù)年,中國鋼鐵工業(yè)的能源效率有了顯著改善,但由于能源利用效率低、一些小規(guī)模和分散產(chǎn)業(yè)的存在以及二次資源能源的低回收循環(huán)利用,中國平均每單位鋼材的能源消耗比其它發(fā)達(dá)國家要高約20%。

32、 2006-2010年期間,在中國的第11個五年計(jì)劃期間,根據(jù)現(xiàn)行政策、措施和標(biāo)準(zhǔn),中國將在鋼鐵行業(yè)中頒布和實(shí)施一些更加雄心勃勃的可持續(xù)發(fā)展和結(jié)構(gòu)調(diào)整新政策。這個計(jì)劃的目標(biāo)之一是在鋼鐵工業(yè)中建立致力于節(jié)能和無污染的環(huán)境循環(huán)經(jīng)濟(jì)鏈的社會。目前可持續(xù)發(fā)展政策和措施的成功實(shí)施,將導(dǎo)致大量能源的節(jié)省。</p><p>  根據(jù)這一計(jì)劃,在“中國的第的11個五年計(jì)劃”中國的人均國內(nèi)生產(chǎn)總值能源消耗將減少20%,每

33、單位工業(yè)增加值的耗水量將減少30%,主要污染物排放總量將減少10 %。一些主要的任務(wù)將在一些高能耗產(chǎn)業(yè)中進(jìn)行,如鋼鐵工業(yè)、有色金屬工業(yè)、煤炭工業(yè)、電力部門和化工等行業(yè)。因此,一個通往利用技術(shù)密集型產(chǎn)品、最優(yōu)的經(jīng)濟(jì)效率、低資源消耗、環(huán)境污染少的新的產(chǎn)業(yè)道路將被構(gòu)造出來。優(yōu)化終端能源利用,將有顯著的能源節(jié)省。</p><p><b>  英文原文:</b></p><

34、;p>  Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China</p><p>  Laboratory of Ecologic and Recycle Metallurgy, University of Science and

35、Technology Beijing, Beijing 100083, People’s Republic of China</p><p>  State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, People’s Republic of

36、China</p><p><b>  Abstract</b></p><p>  A survey of the key issues associated with the development in the Chinese iron and steel industry and current situations of energy consumption

37、 are described in this paper. The apparent production of crude steel in China expanded to 418.78 million tonnes in 2006, which was about 34% share of the world steel production. The iron and steel industry in China is st

38、ill one of the major high energy consumption and high pollution industries, which accounts for the consumption of about 15.2% of the natio</p><p>  Keywords: Iron and steel industry Energy consumption

39、 Energy saving</p><p>  1 Introduction</p><p>  The steel industry has for long played an important role in the development of China’s economy. Over the past decades, China’s steel industry

40、has grown rapidly, overtaken Japan, and become the world’s largest steel producer in 1996. In 2006, China’s production of crude steel amounted to 418.78 million tonnes (Mt) and, continued to remain ?rst in rank. The shar

41、e of output of crude steel of about 335.17 Mt of the key producers accounted for 80% of the aggregate national production and 83.61 Mt of </p><p>  Despite these achievements, China remains a steel producer

42、whose energy ef?ciency is the lowest among the major steel-producing countries, although the overall technical level of its industry has been greatly improved in line with the developments in science and technology. One

43、typical example is the rapid adoption of continuous casting technology. The share of continuous casting output has increased from about 30% of all steel produced in 1992 to 95.8% in 2004. In the meantime, many large ?rms

44、 </p><p>  With improvement of the overall technical level in the steel industry, the production of iron and steel has greatly expanded in the past decade. The apparent production of crude steel in China gre

45、w from 95 million tonnes in 1995 to 418.78 million tonnes in 2006, which is about 4.5 times that in 1995 and more than three times that in 2000 . As a result, China’s share of world steel production leaped from 13% in 19

46、95 to 34% in 2006. This growth is expected to be sustained over the next few years d</p><p>  As is well known, the iron and steel industry is the industry with the largest energy consumption in the world. H

47、aving become the world’s largest steel producer since 1996 China’s steel industry has grown rapidly following huge growth in domestic demand. This increase is consistent with the trend in the increase in its energy</p

48、><p>  consumption.</p><p>  Iron and steel production consumes large quantities of energy, especially in developing countries and countries with economies in transition where outdated and inef?cie

49、nt technologies are often still used. Steel production in developing countries has grown at an average annual rate of 6.6% in recent years and is expected to continue to grow at similar levels due to the current low per

50、capita steel consumption levels in these countries. In industrialized countries, steel consumption averages over</p><p>  Most of China’s steel industry developed through a system of state-owned ‘enterprises

51、’, in which an entire community was devoted to the production of steel. As a result, the data collected relating to the energy consumed to produce steel in China also contain energy used at the enterprise level for a var

52、iety of other functional departments, both directly and indirectly related to the production of steel. In addition, part of China’s steel is produced by small steel mills that do not report energ</p><p>  Th

53、e objective of this paper is to present a survey of some of the key issues associated with the development in the Chinese steel industry, and describes the status of its energy consumption. The differences in steel consu

54、mption in major processes and China’s role in the scene of the international steel industry are analyzed, and the outlook and the measures to be instituted for China’s iron and steel industry are also presented in the pa

55、per. It is important for the world to better understand Ch</p><p>  2 Energy consumption structure of the iron and steel industry in China</p><p>  It is well known that electricity production

56、in China mainly depends on coal, and coal is also the most important fuel used in China’s iron and steel industry. In 2004, the energy consumption mix of the Chinese steel industry consisted of 69.90% coal, 26.40% electr

57、icity, 3.2% fuel oil, and 0.5% natural gas, as shown in Fig. 2 [4].</p><p>  Coal is not only the most widely used fuel but is also as necessary as raw material in the iron and steel industry as most of the

58、rest is electricity. Such a fuel structure raises the energy consumption per unit of production and is unlikely to change greatly in the near future.</p><p>  3 Energy consumption situation in the steel ind

59、ustry</p><p>  The key iron and steel producers in China play an important role in its manufacture of steel and in the consumption of energy. In 2003, China’s 10 largest steel ?rms produced more than a third

60、 of China’s steel output, with the top four ?rms producing more than 20%. This implies that many advanced technologies have earlier</p><p>  existed in China’s steel industry, but the current industry’s conc

61、entration limits the application of these technologies lowering energy ef?ciency in general. Therefore, the iron and steel ndustry remains one of the highest energy consumers and pollution producers accounting for about

62、15.2% of the national total energy consumption, 14% of the national total wastewater and waste gas, and 6% of the total solid waste materials generated.</p><p>  Fig. 3 shows the variations in energy consump

63、tion of the key enterprises in China from 1995 to 2006. The total energy consumption of the iron and steel industry rose rapidly along with rising steel production in the past decades. In the year 2004, the total steel p

64、roduction of China was 274.7 Mt, rising by 107.7% compared to 2000 and by 184.2% compared to 1995. The total energy consumption of the key enterprises in China soared from 96.30 Mtce in 2000 to 197.79 Mtce in 2006, which

65、 was over twice</p><p>  With the application of many new technologies and equipment, the index of energy consumption per tonne of steel decreased remarkably in the past decades. The overall energy consumpti

66、on for China’s large and medium producers in 2005 was 741 kgce per tonne of steel, which was 20.3% lower than that in 2000 of 930 kgce per tonne. In 2006, the overall energy consumption per tonne of steel continued to de

67、crease to 645 kgce per tonne of steel. The comparable energy consumption also took on a decreasing</p><p>  The variations in fresh water consumption per tonne of steel from 2000 to 2006 are shown in Fig. 4.

68、 The total quantity of fresh water used per tonne of steel in 2006 was 6.56 m3, which is 14.9% lower than that in 2005. Other data comparing energy saving, water saving, and environmental protection between 2000 and 2005

69、 are presented in Table 1. It can be seen that the energy ef?ciency of China’s iron and steel industry has made signi?cant improvement in the past few years.</p><p>  4 Energy consumption situation of sever

70、al main processes in the steel industry</p><p>  Fig. 5 shows the variations in energy consumption of several major processes in the steel industry from 1995 to 2005. The energy consumption of the blast furn

71、ace, electric furnace and steel rolling processes has decreased remarkably since 1995, and the corresponding values for the coking, sintering, and converter furnaces have also shown minor decreases. In contrast to the ye

72、ars before 2001, the current energy consumption of the blast furnace process presents an increasing trend that is attribut</p><p>  Among several major processes, the energy consumption of the iron making pr

73、ocess is markedly higher than that of other processes. Taking the example of 2004 as shown in Fig. 6, the total energy consumption of the iron making system accounted for about 70% of the total process energy consumption

74、, including 39% for the blast furnace, 11.9% for coking, 3.51% for balling and 5.55% for sintering. The remaining processes accounted for a small part of about 30%, which is comprised of 12.5% for power, 7</p><

75、;p>  5 Comparisons of energy consumption of the steel industry in China with international levels</p><p>  Energy consumption per tonne of steel in China is higher than that of most advanced countries. O

76、ne of the reasons for this is that the energy utilization ef?ciency in China is low. The average energy consumption per unit of steel is about 20% higher than that of other advanced countries. Compared with Japan, for ex

77、ample, energy consumption for China’s large and medium ?rms in 2004 was 705 kgce per tonne of steel, 7.5% higher than that in Japan, which was 656 kgce per tonne. However, the energy c</p><p>  The general e

78、nergy ef?ciency of China’s steel industry is still relatively low. One of the important reasons is the existence of these small units. Table 2 shows that there is a vast difference in energy consumption between the advan

79、ced and small plants. Only a few large-scale steel-makers have attained or have even exceeded the international levels. Since the output of these advanced plants cannot achieve market dominance, the average energy consum

80、ption level of China’s iron and steel industry </p><p>  The second reason is the existence of small-scale and decentralized industry in China. There are 18 plants with production capacities exceeding 5 Mt o

81、f crude steel, which accounted for 46.36% of the total national crude steel production in 2005. In Japan, the crude steel production of four largest plants accounted for 73.22% of the total national crude steel productio

82、n in 2004, three of which accounted for 61.09%. Except for a few of the large scale steel plants, China’s steel industry lags behi</p><p>  6 Measures and policy recommendations for the iron and steel indus

83、tries of China</p><p>  6.1 To expand coke dry quenching technology</p><p>  Traditionally, the sensible heat of hot coke, pushed from the coking chamber at the temperature of 950–1050 0C, is a

84、lmost equal to 35%–40% of the total amount of heat consumed in the coking process. Adopting coke dry quenching technology can enable recovery of about 80% of the sensible heat from hot coke. Besides, during dry quenching

85、 1 tonne of hot coke can generate 0.45–0.60 tonne of steam at a pressure of about 3.9 MPa. The coke dry quenching process belongs to a technology that is energy sav</p><p>  At the end of 2005, the proportio

86、n of coke dry quenching technology usage in China’s iron and steel industry was less than 30%. At the end of 2007, with the spread of this technology rein-forced by an independent innovation in the past two years, the pr

87、oportion of usage rose to 45%. Now 34 sets of the coke dry quenching unit are under construction and the output share of coke of about 101.58 Mt produced by the coke dry quenching technology accounts for one-third of the

88、 total national production.</p><p>  6.2 To expand top gas pressure recovery turbine (TRT) technology</p><p>  Power can be generated with the energy of pressure from the top of a blast furnace

89、 using a turbine generator group. Theoretically, the power generated from TRT equipment is equal to the power energy consumed when the coal gas pressure at the top of the blast furnace is 80 kPa. Economic returns may be

90、obtained when the pressure of the coal gas reaches 100 kPa and even higher economic returns can be achieved, especially, if the coal gas pressure is greater than 120 kPa. In steel production by the </p><p> 

91、 At the end of 2007, the blast furnaces of capacity greater than 2000 m3 in China that were equipped with TRT technology numbered 49. In future, the use of TRT technology large-scale blast furnaces in China will be wides

92、pread and vigorous.6.3. To expand the technology of pulverized coal injection for the blast furnace Use of pulverized coal injection for blast furnaces is an important innovation for optimizing steel making systems using

93、 the blast furnace route. In addition, it is a powerful incen</p><p>  6.3 To expand the technology of pulverized coal injection for the blast furnace</p><p>  Use of pulverized coal injection

94、for blast furnaces is an important innovation for optimiz- ing steel making systems using the blast furnace route. In addition, it is a powerful incentive to prompt the iron–steel industry to progress in many aspects suc

95、h as optimizing energy stru- cture, energy saving, reducing consumption of materials, cost reduction, etc. Replacing coke by coal can ease the problem of coking coal shortage caused by energy saving measures. Bes- ides,

96、it can reduce environmental</p><p>  In 2007, the average quantity of pulverized coal injection employed for the blast furnace route by China’s large and medium producers was 137 kg per tonne of iron, which

97、in 2000 was 118 kg per tonne of iron. The average quantity of injection has exceeded 200 kg per tonne of iron in some large-scale blast furnaces of China. The 4350 m3 capacity blast furnace in Bao-steel is an example. It

98、 is estimated that in 2010 the average pulverized coal injection quantity realized in China’s blast furnaces i</p><p>  6.4 To eliminate low-level equipment and introduce and develop new technology</p>

99、<p>  Over the past few years, the government of China made a strong effort to eliminate low-level equipment. The energy consumption of China’s small iron and steel units was 1.5 times higher than that of the larg

100、e and medium producers. When China implemented its 11th ?ve-year plan’s policy of energy saving and reducing discharge of pollutants the steel industry was restructured, its equipment capacities enhanced, and pace of mod

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論