外文翻譯----在放熱過程中對半導(dǎo)體熱電偶測量數(shù)據(jù)進行數(shù)值分析_第1頁
已閱讀1頁,還剩5頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p><b>  外文文獻翻譯譯稿2</b></p><p>  在放熱過程中對半導(dǎo)體熱電偶測量數(shù)據(jù)進行數(shù)值分析</p><p>  在回收實驗樣品后,并對其分析后得出,在高壓下快速凝聚物質(zhì)是觀察物質(zhì)物理性質(zhì)和化學(xué)性質(zhì)的動態(tài)趨勢的重要基礎(chǔ)。在許多情況下不可能用一個特制的容器來存某種物質(zhì)的特定狀態(tài),所以會直接關(guān)系到?jīng)_擊波脈沖的物理參數(shù)變化。所以方法要求,人們

2、盡可能的繼續(xù)保持對膠囊內(nèi)物質(zhì)進行抽樣,并同時沖擊波要檢測物質(zhì),而且處在長時間的放松狀態(tài)。人們還應(yīng)該記住,沖擊波檢測膠囊實驗是不同于純動態(tài)實驗?;谶@個原因,兩種方法所得到的結(jié)果簡單的比較可得出許多的不正確和不足,特別是在研究某種物質(zhì)的化學(xué)變化。</p><p>  用沖擊波檢測物質(zhì)的方法,是根據(jù)某些問題而相互結(jié)合的動態(tài)方法,解決了傳統(tǒng)的回收凝聚物質(zhì)的方法。在放熱的過程中記錄半導(dǎo)體的熱電現(xiàn)象就是這樣的一個方法。別的

3、的文章中僅僅只是涉及到對半導(dǎo)體熱電偶的原理的運用。這些顯然不足以獲得有關(guān)連續(xù)變量的信息。本文對此提出了建議用計算方法來分析問題的一般方法,并為活性強的元素制訂解決方案其中錫是用(SNS)來解決。</p><p>  在對實驗過程中所記錄的半導(dǎo)體熱電偶的放熱圖中,根據(jù)敏感元件內(nèi)部的結(jié)構(gòu)研究利用電平測量內(nèi)部電極的結(jié)構(gòu),該電極通過平版石灰?guī)r絕緣套管來連接的。在沖擊波實驗裝置中增加負荷使其速度高于1公里/秒(箭頭方向表示

4、物體的運動方向)。在動態(tài)壓力下降時,艙內(nèi)溫度呈現(xiàn)一定分布,是隨時間變化而分布,是為了測量電路的電磁場而發(fā)生的。假設(shè)電磁場是由于半導(dǎo)體的存在可得:</p><p>  S是半導(dǎo)體的熱電勢,TS1是熱電偶的內(nèi)部電極的溫度; TS2是熱電偶外部界面的溫度。符號的意義是熱電偶的內(nèi)部電極與外部界面之間的溫差。因此,該電路(存在接地電極情況下)如果>0而且>,那么就>0。當半導(dǎo)體熱電偶沒有放熱過程,那么電磁

5、場就下降到零,因為冷卻的熱電偶不存在電磁場。原因是在熱釋放過程中,將有一定的電磁場增長下降到零之后,化學(xué)反應(yīng)就會停止。所以本文對此提出了建議用計算方法來分析問題的一般方法,并為活性強的元素制訂解決方案其中錫是用(SNS)來解決。</p><p>  如果電極兩端的電壓接近,那它就會被記錄,如果滿足電阻值>>,是測量設(shè)備的輸入電阻和是樣品的內(nèi)部電阻。如果= 50或75在沖擊波實驗中就會被使用,很容易得出

6、研究物質(zhì)的電導(dǎo)率和可直接測量半導(dǎo)體材的數(shù)值。原則上,樣品可以被放置一個的金屬箔內(nèi)與排除樣品之間產(chǎn)生的熱電偶熱慣性低電極的電路。</p><p>  在實驗中,我們進行了合成反應(yīng)合成了放熱過程的超導(dǎo)材料陶瓷。熱電偶是由活性較強的錫做成,這是一個熱電功率為的半導(dǎo)體。按照規(guī)定,實驗中的幾何參數(shù)為:,,。用沖擊波轟擊5mm厚的鐵板所產(chǎn)生的壓強為16GP。最初的樣本顯示:混合物由于存在高含量的單質(zhì)銅導(dǎo)致導(dǎo)電性較高。該熱電偶

7、電阻不會使整個錄音期間0.1Re信號衰減。要使U隨時間t而變化,我們使用了能自動記錄數(shù)據(jù)的F4226轉(zhuǎn)換器把模擬信號轉(zhuǎn)換成數(shù)字信號,在允許你改變掃描速度的基礎(chǔ)上,縮短周期。從示波器上的波形可知,沖擊波載荷著能使半導(dǎo)體進行化學(xué)反應(yīng)的負脈沖。該過程可進一步解釋為:在熱釋放狀態(tài)時,樣本加熱反應(yīng)的情況下熱釋放產(chǎn)生了一個極性為正極的信號。事實上,這種脈沖必須是正極的,可從公式成立的條件解釋:>(所研究的混合物中含有活性較強的錫是用SNS來解

8、決)和S> 0 。其次,約17毫秒后,沖擊波進入樣品,由于放熱反應(yīng)使TS2的值增加。在電壓上升時,使它在一段時間內(nèi)下降(這可能是因為在合成過程中形成了低電導(dǎo)率的中間產(chǎn)品)。因此會變得比更大。作為最終產(chǎn)品的形式最初的高導(dǎo)電性也會恢復(fù),因此,隨著的增長。最后,降低了冷卻時間。</p><p>  很顯然,要得知示波器為什么會產(chǎn)生這樣波形,就必須建立數(shù)學(xué)模型對電物理過程進行仿真實驗。即使是在一個平面內(nèi),也是一個復(fù)

9、雜的問題,其中一個必須要解決的是不穩(wěn)定的情況下的導(dǎo)熱方程,也要考慮到在該樣本中的導(dǎo)電性能的變化等等。在本論文中,我們考慮的一個關(guān)系到如何分析錫半導(dǎo)體熱電偶操作數(shù)值的特殊情況。在這里,反應(yīng)系統(tǒng)模型為放熱過程,不同比例的錫和硫的混合也可運用與SNS。</p><p><b>  外文文獻翻譯原文2</b></p><p>  OF SEMICONDUCTOR THERMO

10、COUPLE OPERATION IN RECORDING EXOTHERMIC PROCESSES IN A RECOVERY CAPSULE</p><p>  S. S. Nabatov, A. V. Kul'bachevskii, and A. V. Lebedev UDC 539.63+537.226</p><p>  Numerical simulation is u

11、sed to analyze the operation of a semiconductor tin-monosulfide</p><p>  thermocoupIe. The element is used to record ezothermic processes in shock-recovery experiments.</p><p>  We solved the pr

12、oblem in a one-dimensional formulation by considering a multilayer scheme</p><p>  that models the location of the sample and the thermocouple inside a real flat capsule. Numerical</p><p>  calc

13、ulations yield time dependences of the thermal electromotive force (EMF) at various heatrelease</p><p>  rates in the substance under study</p><p>  High-speed methods of studying the properties

14、 of condensed material under shock compression and shock-recovery experiments with subsequent analysis of the samples are the basis of the dynamic trend in high-pressure physics and chemistry [1]. In many cases, however,

15、 there are no sufficient grounds to assert that the state of the substance recovered in a special capsule is related directly to the changes in the physical parameters recorded in the shock-wave pulse. Methods are requir

16、ed that make it</p><p>  According to [2], this problem should be solved by various combined methods: dynamic methods, conventional recovery methods, and a new methodical approach based on continuous diagnos

17、tics of a substance inside a capsule using electrical methods. Recording of exothermal processes based on the thermoelectric phenomenon in semiconductors is one such method [3]. The latter article, however, deals only wi

18、th the principles of operation of a semiconductor thermocouple. These are obviously insufficient t</p><p>  A diagram of experiments on the recording of exothermal processes in a recovery capsule with a semi

19、conductor thermocouple is presented in Fig. 1. Substance 4 under study with sensitive element 5 are placed inside a flat capsule for electric measurements between the front wall of case 1 and massive inside electrode 2.

20、The electrode is insulated from the case by sleeve 3 made of lithographic limestone. Shock-wave loading of the experimental setup is produced by an aluminum striker accelerated by a</p><p>  where S is the t

21、hermoelectric power of the semiconductor; Tsl is the temperature at the interface between the thermocouple and the internal electrode; Ts2 is the temperature at the interface between the sample and the thermocouple. The

22、sign of the registered signal is determined by the sign of S and that of the temperature difference between the faces of the thermocoup.le. Thus, for this circuit (grounded electrode-capsule case) /ΔE > 0 if S(T) >

23、 0 and Ts2 > Tsl. When there is no exothermal proc</p><p>  If the voltage U across the electrodes is close to AE, it can only be recorded if the condition Re >> Ri is satisfied, where Re is the inp

24、ut resistance of the measuring device, and Ri is the internal resistance of the experimental unit. Since Re = 50 or 75 ~ are used in shock-wave experiments, it is easy to estimate the electrical conductivities of the stu

25、died substance and the semiconductor material for which the quantity AE can be measured directly. In principle, the sample can be excluded fro</p><p>  Figure 2 presents an oscilloscope trace that demonstrat

26、es the possibilities of the method. In the</p><p>  experiment, we registered the synthesis reaction (exothermal process) for superconducting CuaTibYtcOa ceramics. The thermocouple was made of tin monosulfid

27、e, which is a semiconductor compound with a thermoelectric power of +550 #V/K under normal conditions. In accordance with the notation in Fig. 1,the geometric parameters of the experimental arrangement were as follows: I

28、1 = 7 ram, 12 = 13 = 1 ram, and /4 = 16 ram. The amplitude of the shock wave generated inside the steel wall of the capsule b</p><p>  follows, which is caused by an increase in Ts2 due to the exothermaI rea

29、ction. The rise in voltage, however, is followed by its drop for some time (this is probably due to the fact that intermediate products with a low electrical conductivity are formed in the process of synthesis). As a res

30、ult, Ri becomes much greater than Re. As the final product forms, the initial high electrical conductivity is restored and, accordingly, U grows. Finally, the signal decreases, because of cooling of the cell.</p>

31、<p>  It is obvious that for detailed interpretation of such oscilloscope traces, one must supplement the experimental results by a mathematical simulation of the registered electrophysical processes. In a general f

32、ormulation even for the plane variant, this is an involved problem, in which one must solve nonstationary heatconduction equations with varying parameters, choose kinetic dependences describing the chemical interaction,

33、take into account the change in the electrical properties of the sample</p><p>  REFERENCES</p><p>  1. G. A. Adadurov, T. V. Bavina, O. N. Breusov, et al., "On the relationship between the

34、 state of</p><p>  material under dynamic compression and results of studies of recovered samples," in: Combustion and Ezplosion: Proc. of the 3rd USSR Symp. on Combustion and Explosion [in Russian], Na

35、uka, Moscow (1972), pp. 523-528.</p><p>  2. S. S. Nabatov, G. E. Ivanchikhina, A. V. Kolesnikov, et al., "Shock-wave synthesis of tin monosulfide," Khim. Fiz., 14, Nos. 2 and 3, 40-48 (1995).</

36、p><p>  3. S. S. Nabatov, S. O. Shubitidze, and V. V. Yakushev, "Use of the thermal EMF phenomenon in</p><p>  semiconductors to study exothermal processes in a recovery capsule," Fiz. Go

37、reniya Vzryva, 26,</p><p>  No. 6, 114-116 (1990)</p><p>  4. A. V. Lebedev, S. S. Nabatov, and T. A. Alekseenko, "A measuring complex based on an F4226 analog-to-digital converter and its

38、use for recording of electrical parameters in shock-wave recovery experiments," in: Detonation: Materials of the 9th USSR Symp. on Combustion and Explosion [in Russian], Chernogolovka (1989), pp. 94-96.</p>&

39、lt;p>  5. S. S. Nabatov and A. V. Lebedev, "Thermoelectric signMs in shock-wave compression of a</p><p>  semiconducting sample in a flat recovery capsule," Khim. Fiz., 12, No. 2, 167-169 (1993)

40、.</p><p>  6. A. V. Lebedev, A. V. Kul'bachevskii, and S. S. Nabatov, "On measurements of electrical conductivity of semiconductors in shock-wave recovery experiments," Khim. Fiz., 13, No. 12,

41、128-130 (1994).</p><p>  7. R. A. Krektuleva and T. M. Platova, "Simulation of the behavior of multicomponent materials in a shock wave," in: Detonation: Materials of the 2nd USSR Symp. on Detonati

42、on [in Russian], No. 2, Chernogolovka (1981), pp. 98-101.</p><p>  8. W. J. Kolkert, "Calculation of the shock temperature of porous and on-porous high explosives," Propellants and Explosives, No.

43、 4, 71-72 (1979).</p><p>  9.S. S. Batsanov, M. F. Gogulya, M. A. Brazhnikov, et al., "Behavior of the Sn+S reacting system in shock waves," Fiz. Goreniya Vzryva, 30, No. 3, 107-112 (1994).</p&g

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論