版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 摘 要</b></p><p> XF 110KV變電所是地區(qū)重要變電所,是電力系統(tǒng)110KV電壓等級(jí)的重要部分。其設(shè)計(jì)分為電氣一次部分和電氣二次部分設(shè)計(jì)。</p><p> 一次部分由說(shuō)明書,計(jì)算書與電氣工程圖組成,說(shuō)明書和計(jì)算書包括變電所總體分析;負(fù)荷分析與主變選擇;電氣主接線設(shè)計(jì);短路電流計(jì)算;電氣設(shè)備選擇;配電裝置選擇;變
2、電所總平設(shè)計(jì)及防雷保護(hù)設(shè)計(jì)。</p><p> 二次部分由說(shuō)明書,計(jì)算書與電氣工程圖組成。說(shuō)明書和計(jì)算書包括整體概述;線路保護(hù)的整定計(jì)算;主變壓器的保護(hù)整定計(jì)算;電容器的保護(hù)整定計(jì)算;母線保護(hù)和所用變保護(hù)設(shè)計(jì)。</p><p> 計(jì)算書和電氣工程圖為附錄部分。其中一次部分電氣AutoCAD制圖六張;二次部分為四張手工制圖。</p><p> 本變電所設(shè)計(jì)為畢業(yè)
3、設(shè)計(jì)課題,以鞏固大學(xué)所學(xué)知識(shí)。通過(guò)本次設(shè)計(jì),使我對(duì)電氣工程及其自動(dòng)化專業(yè)的主干課程有一個(gè)較為全面,系統(tǒng)的掌握,增強(qiáng)了理論聯(lián)系實(shí)際的能力,提高了工程意識(shí),鍛煉了我獨(dú)立分析和解決電力工程設(shè)計(jì)問(wèn)題的能力,為未來(lái)的實(shí)際工作奠定了必要的基礎(chǔ)。</p><p> 關(guān)鍵詞:變電所;變壓器;繼電保護(hù)</p><p><b> Abstract</b></p><
4、;p> XF county 110KV substation is an important station in this distract, which is one of the extremely necessary parts of the 110KV network in electric power system.</p><p> The design of the substation
5、 can be separated in two parts: primary part and secondary part of the electric design.</p><p> The first part consists of specifications, computation book and Electrical engineering drawings about the desi
6、gn. The specifications has several parts which are General analysis of the station, Load analysis, The selection of the main transformer, Layout of configuration, Computation of short circuit; Select of electric devic
7、es, Power distribution devices, General design of substation plane and the design of thunderbolt protection.</p><p> The second part also consists of specifications, computation book and electrical drawings
8、 about the design。 Specifications and computation book include following section: General, The evaluation and calculate of line protection, Transformer protection, capacitor protection, Bus protection and Self-using tran
9、sformer protection.</p><p> Computation book, Electrical engineering drawings and catalogue of drawings are attached in the end。 There are nine drawings total, in which four are prepared by hand, others are
10、 prepared by computer in which installed the software electrical AutoCAD. From other view, it also can be classified as first part and second part.</p><p> This is a design of substation for graduation desi
11、gn test. It can strengthen our specified knowledge.</p><p> Key-words: substation; transformer; Relay protection</p><p> TRANSFORMER</p><p> 1. INTRODUCTION</p><p>
12、 The high-voltage transmission was need for the case electrical power is to be provided at considerable distance from a generating station. At some point this high voltage must be reduced, because ultimately is must supp
13、ly a load. The transformer makes it possible for various parts of a power system to operate at different voltage levels. In this paper we discuss power transformer principles and applications.</p><p> 2. TO
14、W-WINDING TRANSFORMERS</p><p> A transformer in its simplest form consists of two stationary coils coupled by a mutual magnetic flux. The coils are said to be mutually coupled because they link a common flu
15、x.</p><p> In power applications, laminated steel core transformers (to which this paper is restricted) are used. Transformers are efficient because the rotational losses normally associated with rotating m
16、achine are absent, so relatively little power is lost when transforming power from one voltage level to another. Typical efficiencies are in the range 92 to 99%, the higher values applying to the larger power transformer
17、s.</p><p> The current flowing in the coil connected to the ac source is called the primary winding or simply the primary. It sets up the flux φ in the core, which varies periodically both in magnitude and
18、direction. The flux links the second coil, called the secondary winding or simply secondary. The flux is changing; therefore, it induces a voltage in the secondary by electromagnetic induction in accordance with Lenz’s l
19、aw. Thus the primary receives its power from the source while the secondary supplies </p><p> 3. TRANSFORMER PRINCIPLES</p><p> When a sinusoidal voltage Vp is applied to the primary with the
20、secondary open-circuited, there will be no energy transfer. The impressed voltage causes a small current Iθ to flow in the primary winding. This no-load current has two functions: (1) it produces the magnetic flux in the
21、 core, which varies sinusoidally between zero and φm, where φm is the maximum value of the core flux; and (2) it provides a component to account for the hysteresis and eddy current losses in the core. There combined<
22、/p><p> The no-load current Iθ is usually few percent of the rated full-load current of the transformer (about 2 to 5%). Since at no-load the primary winding acts as a large reactance due to the iron core, the
23、 no-load current will lag the primary voltage by nearly 90º. It is readily seen that the current component Im= I0sinθ0, called the magnetizing current, is 90º in phase behind the primary voltage VP. It is this
24、component that sets up the flux in the core; φ is therefore in phase with Im.</p><p> The second component, Ie=I0sinθ0, is in phase with the primary voltage. It is the current component that supplies the co
25、re losses. The phasor sum of these two components represents the no-load current, or</p><p> I0 = Im+ Ie(3-1)</p><p> It should be noted that the no-load current is distortes and nonsi
26、nusoidal. This is the result of the nonlinear behavior of the core material.</p><p> If it is assumed that there are no other losses in the transformer, the induced voltage In the primary, Ep and that in th
27、e secondary, Es can be shown. Since the magnetic flux set up by the primary winding,there will be an induced EMF E in the secondary winding in accordance with Faraday’s law, namely, E=NΔφ/Δt. This same flux also links th
28、e primary itself, inducing in it an EMF, Ep. As discussed earlier, the induced voltage must lag the flux by 90º, therefore, they are 180º out of phase with the</p><p> Eavg = turns×(3-2)&l
29、t;/p><p> which is Faraday’s law applied to a finite time interval. It follows that</p><p> Eavg = N = 4fNφm(3-3)</p><p> which N is the number of turns on the winding. Form a
30、c circuit theory, the effective or root-mean-square (rms) voltage for a sine wave is 1.11 times the average voltage; thus</p><p> E = 4.44fNφm (3-4)</p><p> Since the same flux links wi
31、th the primary and secondary windings, the voltage per turn in each winding is the same. Hence</p><p> Ep = 4.44fNpφm(3-5)</p><p><b> and</b></p><p> Es = 4.44
32、fNsφm (3-6)</p><p> where Ep and Es are the number of turn on the primary and secondary windings, respectively. The ratio of primary to secondary induced voltage is called the transformation rati
33、o. Denoting this ratio by a, it is seen that</p><p> a = = (3-7)</p><p> Assume that the output power of a transformer equals its input power, not a bad sumption in practice consideri
34、ng the high efficiencies. What we really are saying is that we are dealing with an ideal transformer; that is, it has no losses. Thus</p><p> Pm = Pout(3-8)</p><p><b> or</b>
35、;</p><p> VpIp × primary PF = VsIs × secondary PF(3-9)</p><p> where PF is the power factor. For the above-stated assumption it means that the power factor on primary and seconda
36、ry sides are equal; therefore</p><p> VpIp = VsIs(3-10)</p><p> from which is obtained</p><p> = ≌ ≌ a(3-11)</p><p> It shows that as an approximatio
37、n the terminal voltage ratio equals the turns ratio. The primary and secondary current, on the other hand, are inversely related to the turns ratio. The turns ratio gives a measure of how much the secondary voltage is ra
38、ised or lowered in relation to the primary voltage. To calculate the voltage regulation, we need more information.</p><p> The ratio of the terminal voltage varies somewhat depending on the load and its pow
39、er factor. In practice, the transformation ratio is obtained from the nameplate data, which list the primary and secondary voltage under full-load condition.</p><p> When the secondary voltage Vs is reduced
40、 compared to the primary voltage, the transformation is said to be a step-down transformer: conversely, if this voltage is raised, it is called a step-up transformer. In a step-down transformer the transformation ratio a
41、 is greater than unity (a>1.0), while for a step-up transformer it is smaller than unity (a<1.0). In the event that a=1, the transformer secondary voltage equals the primary voltage. This is a special type of trans
42、former used in instances w</p><p> As is apparent, it is the magnetic flux in the core that forms the connecting link between primary and secondary circuit. In section 4 it is shown how the primary winding
43、current adjusts itself to the secondary load current when the transformer supplies a load.</p><p> Looking into the transformer terminals from the source, an impedance is seen which by definition equals Vp
44、/ Ip. From 3-11, we have Vp = aVs </p><p> and Ip = Is/a.In terms of Vs and Is the ratio of Vp to Ip is</p><p> = = (3-12)</p><p> But Vs / Is is the load impedance ZL thus
45、 we can say that</p><p> Zm (primary) = a2ZL(3-13)</p><p> This equation tells us that when an impedance is connected to the secondary side, it appears from the source as an impedance ha
46、ving a magnitude that is a2 times its actual value. We say that the load impedance is reflected or referred to the primary. It is this property of transformers that is used in impedance-matching applications.</p>
47、<p> 4. TRANSFORMERS UNDER LOAD</p><p> The primary and secondary voltages shown have similar polarities, as indicated by the “dot-making” convention. The dots near the upper ends of the windings have
48、 the same meaning as in circuit theory; the marked terminals have the same polarity. Thus when a load is connected to the secondary, the instantaneous load current is in the direction shown. In other words, the polarity
49、markings signify that when positive current enters both windings at the marked terminals, the MMFs of the two windings a</p><p> Since the secondary voltage depends on the core flux φ0, it must be clear tha
50、t the flux should not change appreciably if Es is to remain essentially constant under normal loading conditions. With the load connected, a current Is will flow in the secondary circuit, because the induced EMF Es will
51、act as a voltage source. The secondary current produces an MMF NsIs that creates a flux. This flux has such a direction that at any instant in time it opposes the main flux that created it in the first p</p><p
52、> In general, it will be found that the transformer reacts almost instantaneously to keep the resultant core flux essentially constant. Moreover, the core flux φ0 drops very slightly between n o load and full load (a
53、bout 1 to 3%), a necessary condition if Ep is to fall sufficiently to allow an increase in Ip.</p><p> On the primary side, Ip’ is the current that flows in the primary to balance the demagnetizing effect o
54、f Is. Its MMF NpIp’ sets up a flux linking the primary only. Since the core flux φ0 remains constant. I0 must be the same current that energizes the transformer at no load. The primary current Ip is therefore the sum of
55、the current Ip’ and I0.</p><p> Because the no-load current is relatively small, it is correct to assume that the primary ampere-turns equal the secondary ampere-turns, since it is under this condition that
56、 the core flux is essentially constant. Thus we will assume that I0 is negligible, as it is only a small component of the full-load current.</p><p> When a current flows in the secondary winding, the result
57、ing MMF (NsIs) creates a separate flux, apart from the flux φ0 produced by I0, which links the secondary winding only. This flux does no link with the primary winding and is therefore not a mutual flux.</p><p&
58、gt; In addition, the load current that flows through the primary winding creates a flux that links with the primary winding only; it is called the primary leakage flux. The secondary- leakage flux gives rise to an induc
59、ed voltage that is not counter balanced by an equivalent induced voltage in the primary. Similarly, the voltage induced in the primary is not counterbalanced in the secondary winding. Consequently, these two induced volt
60、ages behave like voltage drops, generally called leakage reactanc</p><p><b> 變壓器</b></p><p><b> 1. 介紹</b></p><p> 要從遠(yuǎn)端發(fā)電廠送出電能,必須應(yīng)用高壓輸電。因?yàn)樽罱K的負(fù)荷,在一些點(diǎn)高電壓必須降低
61、。變壓器能使電力系統(tǒng)各個(gè)部分運(yùn)行在電壓不同的等級(jí)。本文我們討論的原則和電力變壓器的應(yīng)用。</p><p><b> 2. 雙繞組變壓器</b></p><p> 變壓器的最簡(jiǎn)單形式包括兩個(gè)磁通相互耦合的固定線圈。兩個(gè)線圈之所以相互耦合,是因?yàn)樗鼈冞B接著共同的磁通。</p><p> 在電力應(yīng)用中,使用層式鐵芯變壓器(本文中提到的)。變壓器
62、是高效率的,因?yàn)樗鼪](méi)有旋轉(zhuǎn)損失,因此在電壓等級(jí)轉(zhuǎn)換的過(guò)程中,能量損失比較少。典型的效率范圍在92到99%,上限值適用于大功率變壓器。</p><p> 從交流電源流入電流的一側(cè)被稱為變壓器的一次側(cè)繞組或者是原邊。它在鐵圈中建立了磁通φ,它的幅值和方向都會(huì)發(fā)生周期性的變化。磁通連接的第二個(gè)繞組被稱為變壓器的二次側(cè)繞組或者是副邊。磁通是變化的;因此依據(jù)楞次定律,電磁感應(yīng)在二次側(cè)產(chǎn)生了電壓。變壓器在原邊接收電能的同時(shí)
63、也在向副邊所帶的負(fù)荷輸送電能。這就是變壓器的作用。</p><p> 3. 變壓器的工作原理</p><p> 當(dāng)二次側(cè)電路開路是,即使原邊被施以正弦電壓Vp,也是沒(méi)有能量轉(zhuǎn)移的。外加電壓在一次側(cè)繞組中產(chǎn)生一個(gè)小電流Iθ。這個(gè)空載電流有兩項(xiàng)功能:(1)在鐵芯中產(chǎn)生電磁通,該磁通在零和φm之間做正弦變化,φm是鐵芯磁通的最大值;(2)它的一個(gè)分量說(shuō)明了鐵芯中的渦流和磁滯損耗。這兩種相關(guān)的
64、損耗被稱為鐵芯損耗。</p><p> 變壓器空載電流Iθ一般大約只有滿載電流的2%—5%。因?yàn)樵诳蛰d時(shí),原邊繞組中的鐵芯相當(dāng)于一個(gè)很大的電抗,空載電流的相位大約將滯后于原邊電壓相位90º。顯然可見電流分量Im= I0sinθ0,被稱做勵(lì)磁電流,它在相位上滯后于原邊電壓VP 90º。就是這個(gè)分量在鐵芯中建立了磁通;因此磁通φ與Im同相。</p><p> 第二個(gè)分量
65、Ie=I0sinθ0,與原邊電壓同相。這個(gè)電流分量向鐵芯提供用于損耗的電流。兩個(gè)相量的分量和代表空載電流,即</p><p> I0 = Im+ Ie (3-1)</p><p> 應(yīng)注意的是空載電流是畸變和非正弦形的。這種情況是非線性鐵芯材料造成的。</p><p> 如果假定變壓器中沒(méi)有其他的電能損耗一次側(cè)的感應(yīng)電動(dòng)勢(shì)Ep和二次側(cè)的感應(yīng)電壓
66、Es可以表示出來(lái)。因?yàn)橐淮蝹?cè)繞組中的磁通會(huì)通過(guò)二次繞組,依據(jù)法拉第電磁感應(yīng)定律,二次側(cè)繞組中將產(chǎn)生一個(gè)電動(dòng)勢(shì)E,即E=NΔφ/Δt。相同的磁通會(huì)通過(guò)原邊自身,產(chǎn)生一個(gè)電動(dòng)勢(shì)Ep。正如前文中討論到的,所產(chǎn)生的電壓必定滯后于磁通90º,因此,它于施加的電壓有180º的相位差。因?yàn)闆](méi)有電流流過(guò)二次側(cè)繞組,Es=Vs。一次側(cè)空載電流很小,僅為滿載電流的百分之幾。因此原邊電壓很小,并且Vp的值近乎等于Ep。原邊的電壓和它產(chǎn)生的
67、磁通波形是正弦形的;因此產(chǎn)生電動(dòng)勢(shì)Ep和Es的值是做正弦變化的。產(chǎn)生電壓的平均值如下</p><p> Eavg = turns×(3-2)</p><p> 即是法拉第定律在瞬時(shí)時(shí)間里的應(yīng)用。它遵循</p><p> Eavg = N = 4fNφm (3-3)</p><p> 其中N是指線
68、圈的匝數(shù)。從交流電原理可知,有效值是一個(gè)正弦波,其值為平均電壓的1.11倍;因此</p><p> E = 4.44fNφm (3-4)</p><p> 因?yàn)橐淮蝹?cè)繞組和二次側(cè)繞組的磁通相等,所以繞組中每匝的電壓也相同。因此</p><p> Ep = 4.44fNpφm(3-5)</p>
69、<p><b> 并且</b></p><p> Es = 4.44fNsφm(3-6)</p><p> 其中Np和Es是一次側(cè)繞組和二次側(cè)繞組的匝數(shù)。一次側(cè)和二次側(cè)電壓增長(zhǎng)的比率稱做變比。用字母a來(lái)表示這個(gè)比率,如下式</p><p> a = = (3-7)</p
70、><p> 假設(shè)變壓器輸出電能等于其輸入電能——這個(gè)假設(shè)適用于高效率的變壓器。實(shí)際上我們是考慮一臺(tái)理想狀態(tài)下的變壓器;這意味著它沒(méi)有任何損耗。因此</p><p> Pm = Pout(3-8)</p><p><b> 或者</b></p><p> VpIp × primary PF = V
71、sIs × secondary PF(3-9)</p><p> 這里PF代表功率因素。在上面公式中一次側(cè)和二次側(cè)的功率因素是相等的;因此</p><p> VpIp = VsIs (3-10)</p><p><b> 從上式我們可以得知</b></p><p> = ≌ ≌
72、 a (3-11)</p><p> 它表明端電壓比等于匝數(shù)比,換句話說(shuō),一次側(cè)和二次側(cè)電流比與匝數(shù)比成反比。匝數(shù)比可以衡量二次側(cè)電壓相對(duì)于一次惻電壓是升高或者是降低。為了計(jì)算電壓,我們需要更多數(shù)據(jù)。</p><p> 終端電壓的比率變化有些根據(jù)負(fù)載和它的功率因素。實(shí)際上, 變比從標(biāo)識(shí)牌數(shù)據(jù)獲得, 列出在滿載情況下原邊和副邊電壓。</p><p>
73、當(dāng)副邊電壓Vs相對(duì)于原邊電壓減小時(shí),這個(gè)變壓器就叫做降壓變壓器。如果這個(gè)電壓是升高的,它就是一個(gè)升壓變壓器。在一個(gè)降壓變壓器中傳輸變比a遠(yuǎn)大于1(a>1.0),同樣的,一個(gè)升壓變壓器的變比小于1(a<1.0)。當(dāng)a=1時(shí),變壓器的二次側(cè)電壓就等于起一次側(cè)電壓。這是一種特殊類型的變壓器,可被應(yīng)用于當(dāng)一次側(cè)和二次側(cè)需要相互絕緣以維持相同的電壓等級(jí)的狀況下。因此,我們把這種類型的變壓器稱為絕緣型變壓器。</p>&l
74、t;p> 顯然,鐵芯中的電磁通形成了連接原邊和副邊的回路。在第四部分我們會(huì)了解到當(dāng)變壓器帶負(fù)荷運(yùn)行時(shí)一次側(cè)繞組電流是如何隨著二次側(cè)負(fù)荷電流變化而變化的。</p><p> 從電源側(cè)來(lái)看變壓器,其阻抗可認(rèn)為等于Vp / Ip。從等式 = ≌ ≌ a中我們可知Vp = aVs并且Ip = Is/a。根據(jù)Vs和Is,可得Vp和Ip的比例是</p><p> = =
75、(3-12)</p><p> 但是Vs / Is 負(fù)荷阻抗ZL,因此我們可以這樣表示</p><p> Zm (primary) = a2ZL (3-13)</p><p> 這個(gè)等式表明二次側(cè)連接的阻抗折算到電源側(cè),其值為原來(lái)的a2倍。我們把這種折算方式稱為負(fù)載阻抗向一次側(cè)的折算。這個(gè)公式應(yīng)用于變壓器的阻抗匹配。</p>&
76、lt;p> 4. 有載情況下的變壓器</p><p> 一次側(cè)電壓和二次側(cè)電壓有著相同的極性,一般習(xí)慣上用點(diǎn)記號(hào)表示。如果點(diǎn)號(hào)同在線圈的上端,就意味著它們的極性相同。因此當(dāng)二次側(cè)連接著一個(gè)負(fù)載時(shí),在瞬間就有一個(gè)負(fù)荷電流沿著這個(gè)方向產(chǎn)生。換句話說(shuō),極性的標(biāo)注可以表明當(dāng)電流流過(guò)兩側(cè)的線圈時(shí),線圈中的磁動(dòng)勢(shì)會(huì)增加。</p><p> 因?yàn)槎蝹?cè)電壓的大小取決于鐵芯磁通大小φ0,所以很
77、顯然當(dāng)正常情況下負(fù)載電勢(shì)Es沒(méi)有變化時(shí),二次側(cè)電壓也不會(huì)有明顯的變化。當(dāng)變壓器帶負(fù)荷運(yùn)行時(shí),將有電流Is流過(guò)二次側(cè),因?yàn)镋s產(chǎn)生的感應(yīng)電動(dòng)勢(shì)相當(dāng)于一個(gè)電壓源。二次側(cè)電流產(chǎn)生的磁動(dòng)勢(shì)NsIs會(huì)產(chǎn)生一個(gè)勵(lì)磁。這個(gè)磁通的方向在任何一個(gè)時(shí)刻都和主磁通反向。當(dāng)然,這是楞次定律的體現(xiàn)。因此,NsIs所產(chǎn)生的磁動(dòng)勢(shì)會(huì)使主磁通φ0減小。這意味著一次側(cè)線圈中的磁通減少,因而它的電壓Ep將會(huì)增大。感應(yīng)電壓的減小將使外施電壓和感應(yīng)電動(dòng)勢(shì)之間的差值更大,它將使
78、初級(jí)線圈中流過(guò)更大的電流。初級(jí)線圈中的電流Ip的增大,意味著前面所說(shuō)明的兩個(gè)條件都滿足:(1)輸出功率將隨著輸出功率的增加而增加(2)初級(jí)線圈中的磁動(dòng)勢(shì)將增加,以此來(lái)抵消二次側(cè)中的磁動(dòng)勢(shì)減小磁通的趨勢(shì)。</p><p> 總的來(lái)說(shuō),變壓器為了保持磁通是常數(shù),對(duì)磁通變化的響應(yīng)是瞬時(shí)的。更重要的是,在空載和滿載時(shí),主磁通φ0的降落是很少的(一般在)1至3%。其需要的條件是E降落很多來(lái)使電流Ip增加。</p&g
79、t;<p> 在一次側(cè),電流Ip’在一次側(cè)流過(guò)以平衡Is產(chǎn)生的影響。它的磁動(dòng)勢(shì)NpIp’只停留在一次側(cè)。因?yàn)殍F芯的磁通φ0保持不變,變壓器空載時(shí)空載電流I0必定會(huì)為其提供能量。故一次側(cè)電流Ip是電流Ip’與I0’的和。</p><p> 因?yàn)榭蛰d電流相對(duì)較小,那么一次側(cè)的安匝數(shù)與二次側(cè)的安匝數(shù)相等的假設(shè)是成立的。因?yàn)樵谶@種狀況下鐵芯的磁通是恒定的。因此我們?nèi)耘f可以認(rèn)定空載電流I0相對(duì)于滿載電流是
80、極其小的。</p><p> 當(dāng)一個(gè)電流流過(guò)二次側(cè)繞組,它的磁動(dòng)勢(shì)(NsIs)將產(chǎn)生一個(gè)磁通,于空載電流I0產(chǎn)生的磁通φ0不同,它只停留在二次側(cè)繞組中。因?yàn)檫@個(gè)磁通不流過(guò)一次側(cè)繞組,所以它不是一個(gè)公共磁通。</p><p> 另外,流過(guò)一次側(cè)繞組的負(fù)載電流只在一次側(cè)繞組中產(chǎn)生磁通,這個(gè)磁通被稱為一次側(cè)的漏磁。二次側(cè)漏磁將使電壓增大以保持兩側(cè)電壓的平衡。一次側(cè)漏磁也一樣。因此,這兩個(gè)增大
81、的電壓具有電壓降的性質(zhì),總稱為漏電抗電壓降。另外,兩側(cè)繞組同樣具有阻抗,這也將產(chǎn)生一個(gè)電阻壓降。把這些附加的電壓降也考慮在內(nèi),這樣一個(gè)實(shí)際的變壓器的等值電路圖就完成了。由于分支勵(lì)磁體現(xiàn)在電流里,為了分析我們可以將它忽略。這就符我們前面計(jì)算中可以忽略空載電流的假設(shè)。這證明了它對(duì)我們分析變壓器時(shí)所產(chǎn)生的影響微乎其微。因?yàn)殡妷航蹬c負(fù)載電流成比例關(guān)系,這就意味著空載情況下一次側(cè)和二次側(cè)繞組的電壓降都為零。</p><p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 變壓器外文翻譯
- 變壓器-外文翻譯
- 外文翻譯---電力變壓器
- 變壓器外文翻譯 (2)
- 變壓器畢業(yè)論文外文翻譯
- transformer變壓器外文文獻(xiàn)翻譯
- 變壓器畢業(yè)設(shè)計(jì)外文翻譯
- 變壓器勵(lì)磁涌流抑制外文翻譯
- 外文翻譯--變壓器的類型及結(jié)構(gòu)
- 外文翻譯---負(fù)載運(yùn)行的變壓器
- 外文翻譯---發(fā)電機(jī)和變壓器
- 外文翻譯---負(fù)載運(yùn)行的變壓器.doc
- 電氣專業(yè)畢業(yè)設(shè)計(jì)外文翻譯--變壓器
- 電氣專業(yè)畢業(yè)設(shè)計(jì)外文翻譯--變壓器
- 電氣專業(yè)畢業(yè)設(shè)計(jì)外文翻譯--變壓器
- 變壓器的論文變壓器維修論文
- 變壓器的論文變壓器維修論文
- 變壓器勵(lì)磁涌流的抑制-畢業(yè)論文外文翻譯
- 變壓器故障與監(jiān)測(cè)-變壓器在線監(jiān)測(cè)
- 變壓器.dwg
評(píng)論
0/150
提交評(píng)論