外文翻譯---木質(zhì)纖維素生物預處理的現(xiàn)狀潛力、進展與挑戰(zhàn)的初步研究_第1頁
已閱讀1頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p><b>  畢業(yè)設(shè)計/論文</b></p><p>  外 文 文 獻 翻 譯</p><p>  院 系 XXXXXXXX </p><p>  專 業(yè) 班 級 生物工程0901班 </p><p>  姓  名

2、 XXXXX </p><p>  原 文 出 處School of Life Science&Technology,</p><p>  Huazhong University of Science & Technology </p><p>  評 分

3、</p><p>  指 導 教 師 XXXX </p><p>  XXXXXXXXXXXX</p><p>  2013 年 3月 7日</p><p>  畢業(yè)設(shè)計/論文外文文獻翻譯要求:</p><p>  1.外文文獻翻譯的內(nèi)容應(yīng)與畢業(yè)設(shè)計/論文課題相關(guān)。</p

4、><p>  2.外文文獻翻譯的字數(shù):非英語專業(yè)學生應(yīng)完成與畢業(yè)設(shè)計/論文課題內(nèi)容相關(guān)的不少于2000漢字的外文文獻翻譯任務(wù)(其中,漢語言文學專業(yè)、藝術(shù)類專業(yè)不作要求),英語專業(yè)學生應(yīng)完成不少于2000漢字的二外文獻翻譯任務(wù)。格式按《華中科技大學武昌分校本科畢業(yè)設(shè)計/論文撰寫規(guī)范》的要求撰寫。</p><p>  3.外文文獻翻譯附于開題報告之后:第一部分為譯文,第二部分為外文文獻原文,譯文與

5、原文均需單獨編制頁碼(底端居中)并注明出處。本附件為封面,封面上不得出現(xiàn)頁碼。</p><p>  4.外文文獻翻譯原文由指導教師指定,同一指導教師指導的學生不得選用相同的外文原文。</p><p><b>  譯文:</b></p><p>  木質(zhì)纖維素生物預處理的現(xiàn)狀:潛力、進展與挑戰(zhàn)</p><p><b&

6、gt;  摘 要</b></p><p>  通過生化平臺從木質(zhì)纖維素中生產(chǎn)生物燃料和生化制劑的可行性在很大程度上取決于從植物細胞壁上的纖維素和半纖維素獲得糖類的推進技術(shù)。本文概述了發(fā)展中的植物細胞壁結(jié)構(gòu)生物預處理技術(shù)在從纖維素聚合物中進行糖的后續(xù)酶提取方面的成果和挑戰(zhàn)。該技術(shù)已經(jīng)成為了一個打破瓶頸的新選擇。盡管由于許多固有的局限性沒有引起多少注意,生物預處理還是由于其自身的許多優(yōu)勢而存在很大潛力,包

7、括更環(huán)保、耗能更少、反應(yīng)產(chǎn)生抑制劑更少、副產(chǎn)物更少等。在白蟻和白腐菌方面不斷取得的科技成果為實現(xiàn)這些利益,發(fā)展新一代生物預處理技術(shù)提供了理論依據(jù)。本文綜述了以木質(zhì)素降解酶為主的酶系統(tǒng),描述了當前對微生物降解植物細胞壁的理解,對比了生物與化學的預處理過程。還對生物制漿的成果進行了總結(jié),提供了一個未來生物預處理過程的發(fā)展方向。</p><p><b>  簡介</b></p>&l

8、t;p>  獲得可再生燃料和化學制劑的唯一方式是通過利用綠色植物吸收太陽能,再以有機碳源的形式存儲起來。大自然還開發(fā)了各種途徑以額外的最小輸入能量來利用和回收這些植物材料。這樣做,大自然能夠一直保持一個可持續(xù)發(fā)展的平衡的生態(tài)系統(tǒng)數(shù)百萬年。如何利用木質(zhì)纖維素的生物分解來進行生物燃料和生化生產(chǎn)是這些天然生物過程需要解決的主要障礙,他們往往最節(jié)能并且對環(huán)境產(chǎn)生的影響不大。隨著化石燃料資源的衰退和對氣候變化的擔憂,發(fā)展生物質(zhì)燃料和化學制劑

9、顯得愈發(fā)緊迫。例如, 到2022年,每年生產(chǎn)的360億加侖可再生燃料中,生物燃料必須占到210億加侖。未來生化和生物燃料發(fā)展的基礎(chǔ)是生物質(zhì)原料的供應(yīng)。所有的類型中,木質(zhì)纖維素、木質(zhì)生物、作物殘留物、草和藻類的生物質(zhì)能含量是最豐富的。木質(zhì)生物質(zhì)是地球上最豐富的可再生生物資源,在地球上,每年可生產(chǎn)109~ 200噸,其中只有3%用于諸如造紙工業(yè)的非食品領(lǐng)域。目前纖維素的消費量與谷物消費持平,是鋼鐵消費的3倍。為了既能將這些材料用于生產(chǎn)生物燃

10、料又不與人類的糧食供應(yīng)構(gòu)成沖突,未來的生物煉制將以木質(zhì)生物質(zhì)原料為主。</p><p>  植物細胞壁(PCW)是存儲能源和有機碳的主要材料。PCW的組成和結(jié)構(gòu)決定了以它為原料來設(shè)計下游加工流程生產(chǎn)各種目標分子。植物由有序排列的有壁細胞組成。細胞壁中含有不同比例的混合纖維素(Ca.40%)、半纖維素(Ca.20 - 30%)和(Ca.20 - 30%)。纖維素是一種葡萄糖單元由β-1,4-糖苷鍵聯(lián)系在一起的線性聚

11、合物。半纖維素是許多糖(木糖、甘露糖、半乳糖、阿拉伯糖、鼠李糖)單體的雜聚合物形成的隨機非晶態(tài)結(jié)構(gòu)。另一方面,木質(zhì)素是由一個包含三種DPH(對香豆醇、松柏醇、芥子醇)的大分子單體交叉鏈接組成。木質(zhì)纖維素是一個緊湊的復雜結(jié)構(gòu)。其中一部分含有復雜晶體,和多糖緊密連接成的層狀超細纖維形成的穩(wěn)定劑來防止它們被水解酶和其他外部因素分解 。以木材為例來解釋其結(jié)構(gòu):通常,支持細胞死亡后的管腔可以作為水分運輸?shù)耐ǖ?,其?nèi)層是一個成分未知的異構(gòu)混合部分,

12、內(nèi)層外面的次生壁可以進一步分為S3, S2 ,S1三個子層,三個子層都是由纖維素超細纖維嵌入在不同的半纖維素和木質(zhì)素的一個非晶體混合物中組成的。纖維素的濃度最高的是S2子層,并且向中間層依次減少。富含半纖維素的S3層是最靠近導管的。中層</p><p>  初生壁中高度支鏈化的木質(zhì)素比次生壁中的線性木質(zhì)素更能抑制細胞壁的降解。大多數(shù)生物過程集中于用糖作為能源和碳源通過發(fā)酵獲得不同的產(chǎn)品。主要的糖單元是葡萄糖,在植

13、物細胞壁結(jié)構(gòu)中呈有界的共價纖維素聚合物。從物理化學加工中獲得糖是一個重大的生物精煉的瓶頸。鎖在纖維素和半纖維素聚合物中的糖單位是用于發(fā)酵生產(chǎn)生物燃料和生物化學制劑的唯一能源和碳源。纖維素聚合物的生化分解一般是由稱為木纖維質(zhì)酵素的纖維素酶完成的。由極其復雜而且種類繁多的纖維素復合而成的木質(zhì)纖維素,有專門用來抵御攻擊的結(jié)構(gòu)。木質(zhì)素和半纖維素的復雜的結(jié)構(gòu)和疏水性的細胞壁可以防止酶與纖維素聚合物接觸。因此,木質(zhì)素和半纖維素的結(jié)構(gòu)需要被消減或修改

14、為可以允許纖維素酶隨意移動的自由空間。這通常是通過一個預處理的過程來解決的。</p><p>  我們越來越多的需要新的預處理方法。我們正在進入一個工業(yè)生物技術(shù)、合成生物學、代謝工程和系統(tǒng)生物學的新時代,這些新興技術(shù)和學科提供新的工具微生物用以生產(chǎn)諸如碳氫化合物的先進生物燃料。在使用這些工具進行生物燃料生產(chǎn)方面的真正進步將是有限的,如果給這些微生物供應(yīng)的糖仍然是一個主要障礙??紤]到自然已經(jīng)通過進化創(chuàng)造了復合酶作為

15、生物催化劑,它有能力通過選擇性地斷裂化學鍵之間的基本單位解開木質(zhì)素分子的復雜結(jié)構(gòu),我們應(yīng)該尋求利用類似的物理化學加工過程,利用木質(zhì)素和半纖維素降解酶實現(xiàn)在預處理中整合和糖化的終極目標。這些酶在傳統(tǒng)的預處理之前或之后使用以實現(xiàn)減少,并最終取代熱化學處理,從而減少整個預處理在大分子水平和簡化工藝的嚴重影響。</p><p>  在可持續(xù)發(fā)展和能源效率的前提下,生物工藝由于其可以在自然環(huán)境下發(fā)生且環(huán)保的特點優(yōu)于理化過程

16、?;诖说纳镱A處理未來將吸引更多的關(guān)注。本文將在這個話題上提供一個全面的調(diào)查。本文將在目前生物預處理工藝的理論基礎(chǔ)上,概述先進的知識,指出信息和技術(shù)的差距。最后,本文還提供了一些猜測,提出一些未來研究和發(fā)展方向。需要指出的是,理想的預處理過程需要木質(zhì)素和半纖維素的解構(gòu)。本文將,主要側(cè)重于木質(zhì)素降解。本文首先從木質(zhì)素分解酶系統(tǒng)入手,其次是不同的微生物如何分解木質(zhì)素。對生物預處理和熱化學預處理作出比較,然后提供生物制漿的應(yīng)用實例,得出結(jié)論

17、并展望未來。</p><p><b>  外文文獻原文:</b></p><p>  Status of Biological Pretreatment of Lignocellulosics: Potential, Progress and Challenges</p><p>  Shulin Chen, Xiaoyu Zhang, Dee

18、pak Singh, Hongbo Yu, Xuewei Yang </p><p>  Department of Biological Systems Engineering, Washington State University, </p><p>  Pullman, WA 99164.</p><p>  School of Life Science

19、 & Technology, Huazhong University of Science & Technology,</p><p>  Wuhan, Hubei, P.R.China, 430074.</p><p><b>  Abstract</b></p><p>  The feasibility of produc

20、ing biofuels and biochemicals from lignocellulosic biomass via the biochemical platform depends largely on advancing technologies obtaining sugars from the cellulose and hemicelluloses of the plant cell walls. This paper

21、 provides an overview on the merit and challenges related to developing biological pretreatment processes as a new alternative to break the barriers of the plant cell wall structure for subsequent enzymatic extraction of

22、 sugars from cellulose polymer. Alt</p><p>  Introduction </p><p>  The only way to obtain renewable transportation fuels and chemicals is through the use of plant biomass that stores the interc

23、epted solar energy via photosynthesis in the forms of organic carbon. Nature has also developed various pathways for utilizing and recycling these plant materials with minimum input of additional energy. In doing so, nat

24、ure has been able to maintain a sustainable, yet balanced ecosystem for millions of years. These naturally occurring biological processes should be adopte</p><p>  The plant cell walls (PCW) are the primary

25、materials where energy and organic carbon are stored. The composition and structure of PCW determines the design of the down stream processes using PCW as raw materials to produce various target molecules. Plant consists

26、 of an orderly arrangement of cells with walls composed of varying amounts of a mixture of cellulose (ca. 40%), hemicellulose (ca. 20-30%) and lignin (ca. 20-30%) [8]. Cellulose is a linear polymer of D-glucose units lin

27、ked by β-1, 4-gly</p><p>  The essence of converting lignocellulosics to fuels and chemicals is to obtain the desirable form of organic carbon molecules from the PCW to be used either as precursor molecules

28、or energy sources for the targeted fuel products. There are typically two major platforms for biomass conversion. The first one is biochemical platform in which various sugar molecules are first obtained from the biomass

29、. The sugars are then used by microorganisms to be converted subsequently to target fuel molecules s</p><p>  The current pretreatment technologies for making an easy access for the cellulase enzyme to catal

30、yze cellulose degradation to sugars are physiochemical in nature. The purpose of these processes is to degrade the hemicelluloses or lignin structure. Hydrothermal processes include steam explosion [15], carbon dioxide e

31、xplosion [16], or hot water treatment [17]. Likewise, chemical processes include dilute-acid treatment [18], alkali treatment [19], organosolv process using organic solvents [20], amm</p><p>  There is incre

32、asing needs for new pretreatment approaches. As we are entering a new era of industrial biotechnology, synthetic biology, metabolic engineering, and system biology provide new tools to engineer microbes to produced advan

33、ced biofuels such as hydrocarbons. The real advancement in biofuel production using these tools will be limited if the supply of sugars to these microorganisms remains a major barrier. Considering the fact that nature

34、has been created through evolution biological </p><p>  In the interests of sustainability and energy efficiency, biological process is superior to the physiochemical ones as they occurs under natural enviro

35、nment and do not produce disruptions that are not tolerable by the environment. Based on the belief that such a biological pretreatment will attract more attention in the future, this review aims at providing a comprehen

36、sive survey on this topic. It is xpected that this paper will present the rationale of biological pretreatment process, overview </p><p>  1. Ligninolytic enzyme system</p><p>  Lignin can be de

37、gradated by enzymes produced by various organisms among which white rot fungus has been found the most effective. Lignin biodegradation by white rot fungi involves various enzymes, and the most significant three are lacc

38、ases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2), lignin peroxidases (LiPs, EC 1.11.1.14), and manganese peroxidases (MnPs, EC 1.11.1.13) [26, 27]. LiPs, MnPs, and laccase are phenol oxidases which catalyze simila

39、r reactions [10]. They oxidize phenolic comp</p><p>  2. Processes of biological deconstruction of plant cell walls </p><p>  There are many ways of plant decay in nature by different organisms

40、in addition to fungi. Although many of the mechanisms of PCW degradation by these systems are still unknown, there is no doubt that further understanding of these processes will provide critical insight into developing n

41、ew generation of pretreatment processes. </p><p>  3. Comparison of biological pretreatment with typical thermochemical processes </p><p>  3.1. Effectiveness </p><p>  Main purpose

42、 of the pretreatment for lignocelluloses is to dismantle the matrix structure of lignin and hemicelluloses to modify the pores in the material to allow cellulolytic enzymes to penetrate the barrier in the PCW to degrade

43、cellulose polymer [15]. Thus, the pretreatment should be effective to avoid degradation or loss of carbohydrate, and avoid formation of inhibitory by-products for the subsequent hydrolysis and fermentation and it must b

44、e cost-effective [11]. </p><p>  3.2. Energy consumption</p><p>  Comparing to the biological pretreatment, thermochemical methods to convert the lignocellulosic biomass utilizes large amount of

45、 energy in the form of heat and chemicals. For example, alkaline processes suffer from silica scaling in chemical recovery because many agricultural feedstocks, such as rice and wheat straw, have very high silica content

46、. The scaling problem prohibits the recovery of alkaline chemicals from pretreatment liquor [10]. Similarly, the use of dilute acid pretreatment is not </p><p>  3.3. Inhibitors as by-products </p>&l

47、t;p>  A major disadvantage of thermochemical pretreatment processes is the production of by-products that often inhibit downstream processes. During thermochemical and hydrothermal processes, some of the glucose relea

48、sed from cellulose is degraded to 5-hydroxymethylfurfural (HMF), levulinic acid, and formic acid. Likewise, the pentose from hemicellulose is converted to furfural and formic acid. During steam explosion, lignin is prim

49、arily degraded through the homolytic cleavage of β-O-4 ether and othe</p><p>  3.4 Reaction rate</p><p>  Although, the biological pretreatment process is a safe, low energy requiring process fo

50、r lignocellulosic material disintegration, the typical degradation process using fungi occurs in a longer incubation time. Some of the biological pretreatment time of incubation and released sugar percentage has been tab

51、ulated below. Hatakka et al. [19] studied the biological pretreatment of wheat straw by 19 fungal strains. Incubated at the 37 ℃ in the solid state fermentation, Pleurotus ostreatus was able t</p><p>  Table

52、 1 : Biological degradation of various substrates by different fungal strains and contribution in the sugar release as well as lignin loss.</p><p>  a : cellulose; b : hemicellulose; ab : total sugar increas

53、ed than untreated control; c : total reducing sugars; d : degradation improvement; e : total weight loss; f : Klason lignin loss; g : total lignin loss; h: pitch content reduction; NM : Not mentioned.</p><p>

54、;  4. Near-term examples and future perspective</p><p>  An example of near-term application of biological pretreatment is biopulping. By using fungi to alter the lignin in the cell walls of the wood, it &qu

55、ot;softens" the wood chips. Therefore, through the biopulping process, energy consumption to convert the wood into paper could be less due to the preferential removal of lignin by the fungus [15]. Therefore, biopul

56、ping is focused on lignolytic enzymes to substitute the chlorinated agents in the paper pulp bleaching [16]. In addition to this, biopulping</p><p>  5.Concluding remarks </p><p>  Cementing hem

57、icellulose and cellulose together in the lignocellulosic cell walls, lignin provides plant strength and makes plants hard for microbes to attack. Nonetheless, nature has developed ecologically sustainable processes for e

58、xtracting sugars from plant cell walls and for recycling the lignocellulosic biomass. The current technologies developed artificially are not as sustainable as the natural process as technologies require energy and chemi

59、cals and produce inhibitors. An ideal pretreatm</p><p>  References: </p><p>  Hägerdal BH, Himmel ME, Somerville C, Wyman C: Welcome to Biotechnology for Biofuels. Biotechnol. Biofuel. 1 (

60、1), 1-4 (2008).</p><p>  Rubin EM: Genomics of cellulosic biofuels. Nature 454 (4), 841-845 (2008).</p><p>  Sheehan J, Dunahay T, Benemann J, Roessler P: A look back at the U.S. Department of E

61、nergy’s aquatic species program:biodiesel from algae. NREL TP-580-24190 1-296 (1998).</p><p>  Reddy N, Yang Y: Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 23:22–27

62、 (2005).</p><p>  Zhang YHP, Lynd LR: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems.Biotechnol. Bioeng. 88, 797–824(2004).</p><p>  Kamm

63、 B, Kamm M: Principles of biorefineries. Appl. Microbiol. Biotechnol. 64, 137–145 (2004).</p><p>  Das H, Singh SK: Useful byproducts from cellulosic wastes of agriculture and food industry—a critical apprai

64、sal. Crit. Rev. Food Sci. Nutr. 44, 77–89 (2004).</p><p>  Sjostrom E: Plant chemistry: Fundamentals and applications, 2nd ed. Academic Press, New York/London, (1993).</p><p>  Fengel D: Ultrast

65、ructural organization of the cell wall components. J. Polym. Sci. 36, 383-392 (1971).</p><p>  Kuhad RC, Singh A, Eriksson KL: Microorganisms and enzymes involved in the degradation of plant fiber cell walls

66、. Adv. Biochem. Eng.Biotechnol. 57, 45-125 (1997).</p><p>  Wardrop AB, Bland DE: The process of lignification in planty plants. In: Biochemistry of plant. Kratzi K, Billek G (Ed.), New York, 92-116 (1959).&

67、lt;/p><p>  Jurasek L: Experimenting with virtual lignins. In: Lignin and lignan biosynthesis. Lewis NG, Sarkanen S(eds.), ACS Symposium Series, No 697. American Chemical Society, Washington, DC 276–293 (1998).

68、</p><p>  Jung HG, Deetz DA: Cell wall lignification and degradability. In: Forage cell wall structure and digestibility. Jung HG et al (eds.) ASA, CSSA, and SSSA, Madison, WI 315–346 (1993).</p><

69、p>  Bayer EA, ChanzBayer EA, Chanzy H, Lamed R, Shoham Y: Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol. 8(5), 548-57 (1998). </p><p>  Cara C, Ruiza E, Ballesteros M, Manzanares P, Neg

70、ro MJ, Castro E: Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel. 87(6), 692-700 (2008).</p><p>  Zheng YZ, Lin HM, Tsao GT: Pretreatment for cellulose hydrolysis by carbo

71、n dioxide explosion. Biotechnol. Prog.14, 890–896(1998). </p><p>  Mosier N, Wyman C, Dale B et al.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6):

72、 673-686 (2005). </p><p>  Lloyd TA, Wyman CE: Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96, 196

73、7 – 1977 (2005).</p><p>  Karr WE, Holtzapple T: Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioener. 18, 189–199 (2000). </p><p>  Holtzapple MT, Hump

74、hrey AE, Taylor JD: Energy requirements for the size reduction of poplar and aspen wood. Biotechnol. Bioeng. 33, 207–210 (1989). </p><p>  Teymouri F, Perez LL, Alizadeh H, Dale BE: Ammonia fiber explosion t

75、reatment of corn stover. Appl. Biochem. Biotechnol. 113-116, 951–963 (2004). </p><p>  Kim TH, Lee YY: Pretreatment of corn stover by soaking in aqueous ammonia. Appl. Biochem. Biotechnol. 124, 1119–1132 (20

76、05).</p><p>  Maijala P: Heterobasidion annosum and plant decay: enzymology of cellulose, hemicellulose, and lignin degradation. University of Helsinki, Helsinki, Finland (2000).</p><p>  Hatakk

77、a A: Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol. Rev. 13, 125-135 (1994).</p><p>  Ferraz ABF, Bordignon SAL, Staats C, Schripsema J, Po

78、ser GL: Benzopyrans from Hypericum polyanthemum. Phytochemistry 57(5), 1227-1230 (2001).</p><p>  Kirk TK, Farrell RL: Enzymatic "combustion": the microbial degradation of lignin. Annu. Rev. Microb

79、iol. 41, 465-505 (1987).</p><p>  Srinivasan C, D'Souza TM, Boominathan K, Reddy CA: Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl. Environ. Microbio

80、l. 61(12), 4274-4277 (1995).</p><p>  Eggert C, Temp U, Dean JFD, Eriksson KL: A fungal metabolite mediates oxidation of non-phenolic lignin model compounds and synthetic lignin by laccase. FEBS Lett. 391(1-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論