版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> 水工建筑物,29卷,9號(hào),1995</p><p> 旋渦隧道溢洪道。液壓操作條件</p><p> M . A .戈藍(lán),B. zhivotovskii,我·諾維科娃,V . B .羅季奧諾夫,和NN羅薩娜娃</p><p> 隧道式溢洪道,廣泛應(yīng)用于中、高壓液壓工程。因此研究這類溢洪道這是一個(gè)重要的和緊迫的任務(wù),幫助在水工建筑
2、中使用這些類型的溢洪道可以幫助制定最佳的和可靠的溢洪道結(jié)構(gòu)。有鑒于此,我們希望引起讀者的注意,基本上是新的概念(即,在配置和操作條件),利用旋渦流溢洪道[1,2,3,4 ]。一方面,這些類型的溢洪道可能大規(guī)模的耗散的動(dòng)能的流動(dòng)的尾段。因此,流量稍渦旋式和軸向流經(jīng)溢洪道的尾端,不會(huì)產(chǎn)生汽蝕損害。另一方面,在危險(xiǎn)的影響下,高流量的流線型面下降超過長度時(shí),最初的尾水管增加的壓力在墻上所造成的離心力的影響。一些結(jié)構(gòu)性的研究隧道溢洪道液壓等工程r
3、ogunskii,泰瑞,tel'mamskii,和tupolangskii液壓工程的基礎(chǔ)上存在的不同的經(jīng)營原則現(xiàn)在已經(jīng)完成了。這些結(jié)構(gòu)可能是分為以下基本組:</p><p> -渦旋式(或所謂的single-vortex型)與光滑溢洪道水流的消能在隧道的長度時(shí)的研究的直徑和高度的隧道;參看。圖1),而橫截面的隧道是圓或近圓其整個(gè)長度。渦旋式溢洪道-與越來越大的能量耗散的旋渦流在較短的長度- <(6
4、0——80)高溫非圓斷面導(dǎo)流洞(馬蹄形,方形,三角形),連接到渦室或通過一個(gè)耗能(擴(kuò)大)室(圖2)[ 5,6 ]或手段順利過渡斷[ 7];-溢洪道兩根或更多互動(dòng)旋渦流動(dòng)耗能放電室[ 8 ]或特殊耗能器,被稱為“counter-vortex耗能”[ 2,4 ]。終端部分尾水洞渦流溢洪道可以構(gòu)造的形式,一個(gè)挑斗,消力池,或特殊結(jié)構(gòu)取決于流量的出口從隧道和條件的下游航道。液壓系統(tǒng)用于鏈接的流量的尾管可能涉及可以使用overflowtype或自
5、由落體式結(jié)構(gòu)。渦旋式溢洪道光滑或加速[ 7 ]能量耗散的整個(gè)長度的水管道是最簡單和最有前途的各類液壓結(jié)構(gòu)。設(shè)計(jì)技術(shù)渦溢洪道已開發(fā)和出版了許多研究[ 2,7,8 ];特別是,技術(shù)是目前可用于計(jì)算液壓阻力的路線和流動(dòng)率,渦旋式流量和壓力。然而,每一個(gè)實(shí)際工程設(shè)計(jì)結(jié)構(gòu)也必須進(jìn)行評估。模型調(diào)查手段,因?yàn)樗匀皇遣豢赡茉u估所有的因素的操作溢洪道</p><p> 評價(jià)設(shè)計(jì)溢洪道的尺寸。選擇一個(gè)特定的溢洪道類型取決于很多因
6、素,如有效的水頭,巨大的escapage放電,這是配置的液壓項(xiàng)目(例如,使用一個(gè)河引水隧道在運(yùn)營期間或的水管道水力發(fā)電廠在施工期間),在放電的流入尾水渠道,地形及地質(zhì)特征(特別是可能的長度,尾水腿),和技術(shù)經(jīng)濟(jì)特點(diǎn)。</p><p> 入口(入口段的形式,表面或地下輸)。入口的設(shè)計(jì)是根據(jù)設(shè)計(jì)規(guī)范。其目的在保持其運(yùn)輸能力時(shí),運(yùn)作中的水能自由下泄。軸(垂直或傾斜)。軸的直徑是由近等于尾水管的直徑。最大平均流量在一個(gè)
7、軸的范圍是15 - 20米/秒。渦流產(chǎn)生裝置。整個(gè)長度的尾段溢洪道,以及一定程度的洪水的軸(即,其水力工況Q<Qdes)。這是負(fù)責(zé)運(yùn)輸能力和流動(dòng)制度基本的條件。最簡單的設(shè)計(jì)的渦的流動(dòng)是一個(gè)節(jié)點(diǎn),包括在建設(shè)一個(gè)渦流發(fā)生器(平面或平行船中體;參見。1和2)。基本特點(diǎn)是一個(gè)渦流發(fā)生器在鋼筋混凝土是距離隧道軸線為重心的“關(guān)鍵”的部分地區(qū)。;尾水隧道管道以外的渦流發(fā)生器;傾斜角度軸引水管道的渦軸發(fā)電機(jī)。運(yùn)動(dòng)學(xué)特征旋渦流動(dòng)和運(yùn)輸能力取決于一個(gè)
8、重要的溢洪道。對渦流產(chǎn)生裝置的設(shè)計(jì)。該系數(shù)的tangential-type渦流生成腦電圖=安全裝置。,圖(圖3);這里是平均流量在一個(gè)圓形出口段的渦流節(jié)點(diǎn))。應(yīng)該指出的是,渦流節(jié)點(diǎn)設(shè)計(jì)=空調(diào)機(jī)作用,哪里是問是價(jià)值的幾何參數(shù)該渦流發(fā)生器需要維持所需的預(yù)旋流動(dòng)。例如,tupolangskii渦旋式溢洪道,Areq=1.4;為tel'mamskii水利工程,Areq =0.6;并為rogun</p><p>
9、 另一個(gè)特征參數(shù)的旋轉(zhuǎn)度對溢洪道的尾段,是積分流旋轉(zhuǎn)參數(shù)的二[ 1,2 ]。預(yù)旋17后面0渦生成裝置在距離3.0dt從軸的軸可能的基礎(chǔ)上確定的圖形依賴性:(圖4)。整體寬度的隧道被確定類型的溢洪道設(shè)計(jì)和選擇整體寬度的隧道被確定類型的溢洪道設(shè)計(jì)和選擇。該方法決定耗散過剩能量(無論是均勻或越來越密集耗散)。橫截面面積的終端部分的尾水隧洞確定等效直徑。翻譯結(jié)果重試消能室。選擇設(shè)計(jì)的尺寸取決于速度旋轉(zhuǎn)流入口和后室長度的尾水隧洞。對尾水隧洞,最好
10、的方法是使用一個(gè)漸縮管(或圓柱)段為共軛條件之間的切向渦輪發(fā)電機(jī)和消能室。本部分將負(fù)責(zé)以下功能:使減少旋轉(zhuǎn)速度的水流進(jìn)入消能室,均衡流量轉(zhuǎn)向最大軸部分的流動(dòng)速率的中央部分,并減少其動(dòng)態(tài)載荷在旋轉(zhuǎn)節(jié)點(diǎn)的流量。</p><p> 從上述討論如下,在這些案件中沒有空氣壓迫,渦旋式溢洪道可能是模仿方面的所有要求的標(biāo)準(zhǔn)。情況是不同的,在案件的摻氣水流,這也是難以模型。在水力模型外部大氣壓力時(shí),空氣的體積含量略有不同的流動(dòng)
11、是礦井下運(yùn)輸?shù)年P(guān)鍵的部分,而在物理結(jié)構(gòu),包埋空氣,向下移動(dòng),壓縮的增加液體壓力。因此,在方案的溢洪道在泰瑞水利工程(圖1),百分壓的物理結(jié)構(gòu)是高達(dá)15倍,而在開放模型建造一個(gè)1 : 60規(guī)模,壓縮的百分點(diǎn)在1.4 - 1.5范圍,即,十分之一的價(jià)值發(fā)現(xiàn)的領(lǐng)域。此外,在實(shí)驗(yàn)中使用的模型,有增加指出在角度的旋轉(zhuǎn)流動(dòng)中的初始段的尾水隧洞為不良影響,排放減少的內(nèi)容和空氣的混合物增加。因?yàn)樵谖锢韺ο笾锌諝夂康年P(guān)鍵部分都是微不足道的。建立一個(gè)可靠
12、的模型vortextype當(dāng)有一個(gè)自由的水平在莖軸和多余的的空氣的流動(dòng),它是必要的隔離該地區(qū)的空氣在上部和下部的區(qū)域,從外部環(huán)境,在這些地區(qū)減少空氣壓力根據(jù)幾何尺度建立一個(gè)真空的模型。</p><p> 溢洪道水力條件的部分。液壓操作條件的渦旋式溢洪道不同于相應(yīng)條件構(gòu)造配置傳統(tǒng)的溢洪道??紤]到這些差異的基礎(chǔ)上的結(jié)果,實(shí)驗(yàn)室研究工作的rogunskii溢洪道水力發(fā)電廠(包括消能室)和溢洪道的水力工程(,泰瑞經(jīng)營著
13、均勻的能量耗散整個(gè)隧道的長度)。初步設(shè)計(jì)的rogunskii水電廠稱為槽的末端結(jié)構(gòu)的專業(yè)溢洪道;它的目的是,使結(jié)束流動(dòng)率達(dá)到60米/秒??梢岳斫獾氖?,流動(dòng)率是需要采用特殊的保護(hù)措施的流線型表面溢洪道避免氣蝕損傷。為了滿足這一需要,塔什干水電局工作,與該公司的流體力學(xué)研究(現(xiàn)在中央水利學(xué)院,社會(huì)科學(xué)研究所的建設(shè),發(fā)展經(jīng)濟(jì)學(xué))幾種版本的溢洪道設(shè)計(jì)旨在消除的一個(gè)重要部分的能量范圍內(nèi)的流動(dòng)。通過溢洪道和大大減少流量的尾水隧洞,排入河道。在這個(gè)研
14、究中,為了彎曲的轉(zhuǎn)折段,傳統(tǒng)配置一個(gè)豎井溢洪道取而代之的是一個(gè)切向流渦流發(fā)生器。同樣的。渦旋式流創(chuàng)建整個(gè)長度的尾段。液壓研究進(jìn)行了一個(gè)模型,模擬了豎井溢洪道在1 : 50的比例和包括一個(gè)軸測量直徑13米,高148米,切渦流產(chǎn)生裝置,和尾水隧洞。</p><p> 研究表明,在進(jìn)行軸的送水流量旋轉(zhuǎn)節(jié)點(diǎn),中間水位保持在流量小于設(shè)計(jì)速度。這臺(tái)標(biāo)記的大小取決于該escapage放電和抵抗的溢流段位于一個(gè)較低的水平。在模
15、型幾乎完全封閉的空間。此外,較低水平的水,空氣越多限制水的流量將流入旋轉(zhuǎn)節(jié)點(diǎn)。穩(wěn)定旋渦流動(dòng)與周圍的水環(huán)境和內(nèi)部氣體,核心是形成超越切渦流發(fā)生器。由于不對稱輸水進(jìn)入渦流發(fā)生器在最初的部分,核心的流動(dòng)是非圓,位于遠(yuǎn)離中心截面的位置。整個(gè)圓柱段長度的管道,氣體氣芯具有一個(gè)波浪狀彎與曲軸線相吻合與隧道軸線甚至接近10dx從軸的軸。作為nonaerated流進(jìn)入尾管通過旋轉(zhuǎn)的節(jié)點(diǎn),一個(gè)真空計(jì)壓力是建立在燃?xì)庹羝暮诵?,并在案件高度曝氣?lt;/
16、p><p> 減少壓力的燃?xì)庹羝暮诵氖桥c離心力的作用,在渦旋式流動(dòng),同時(shí)增加了壓力與幾乎完全釋放空氣曝氣流量為核心引起的運(yùn)輸氣泡從外圍向中心的作用下的壓力梯度。一尾管圓柱起始段,自由區(qū)下游從0.7增加的部分距離1.3dv從軸軸0.77的部分在距離12.4dr,而角旋轉(zhuǎn)流和軸向和周向流動(dòng)率下降。在一個(gè)錐形的部分。相對面積的氣體從0.987下降到0.874,長度的錐形部分,而角旋轉(zhuǎn)流減少之間的一半和三分之二的初始值的
17、這一段。一個(gè)專用的建筑,是提出了在本文章的存在是一個(gè)能量耗散腔中的渦旋式水流突然膨脹,迅速轉(zhuǎn)化為軸向流動(dòng)放電流量從尾水隧洞直接進(jìn)入大氣層。平等的離心加速度的自由落體加速度是一個(gè)必要條件的崩潰渦結(jié)構(gòu)的流動(dòng)的隧道。一旦達(dá)到平等,水沿隧道頂“洞穴中,“混合容易與空氣中的流動(dòng)的核心。改造旋渦狀流入軸向流發(fā)生。這時(shí)伴隨著顯著的能量耗散。在一個(gè)系統(tǒng)的一個(gè)錐形渦發(fā)生器和消能室后面的發(fā)電機(jī),86%的初始能量的流動(dòng)消散,因?yàn)樗┻^這段。分布的靜態(tài)壓力的軸
18、是幾乎相同的版本。分布的靜態(tài)壓力在水洞中取決于設(shè)計(jì)的隧道和流動(dòng)程度的旋轉(zhuǎn)。系統(tǒng)的越來越多的能量耗散。</p><p><b> 結(jié)論</b></p><p> 我們考慮了溢洪道使我們有效的保證耗散過剩的動(dòng)能和結(jié)構(gòu)整體可靠性。運(yùn)行可靠性的基礎(chǔ)上,渦溢洪道消能在水洞中設(shè)計(jì),被認(rèn)為在目前的文章中證實(shí)了這一事實(shí),壓力波動(dòng)和強(qiáng)度的湍流耗散順利整個(gè)隧道,這些數(shù)量的低水平點(diǎn)放電
19、的流動(dòng)到下一池。強(qiáng)行配置一個(gè)旋流泄,是一個(gè)水利工程決定性的條件。</p><p><b> 分享到 </b></p><p> Hydrotechnical Construction, Vol. 29, No. 9, 1995</p><p> VORTEX-TUNNEL SPILLWAYS. HYDRAULIC OPERATING CO
20、NDITIONS</p><p> M. A. Galant, B. A. Zhivotovskii,</p><p> I. S. Novikova, V. B. Rodionov,</p><p> and N. N. Rozanova</p><p> Tunnel spillways are widely used in me
21、dium- and high-pressure hydraulic works. It is therefore an important and</p><p> pressing task to improve the constructions used in these types of spillways and to develop optimal and reliable spillway<
22、/p><p> structures.</p><p> With this in mind, we would like to turn the reader's attention to essentially novel (i.e., in terms of configuration and</p><p> operating condition
23、s) vortex spillways which utilize vortex-type flows [1, 2, 3, 4]. On the one hand, these types of spillways</p><p> make possible large-scale dissipation of the kinetic energy of the flow on the initial leg
24、 of the tailrace segment, and, as a</p><p> consequence, flow rates of slightly vortex-type and axial flows through the subsequent legs that do not produce cavitation</p><p> damage. On the ot
25、her hand, the dangerous effect of high flow rates on the streamlined surface decreases over the length of</p><p> the initial tailrace leg as a consequence of the increased pressure on the wall caused by th
26、e effect of centrifugal forces.</p><p> A number of structural studies of tunnel spillways for hydraulic works such as the Rogunskii, Teri, Tel'mamskii, and</p><p> Tupolangskii hydraulic
27、works based on different operating principles have now been completed. These constructions may be</p><p> divided into the following basic groups:</p><p> - vortex-type (or so-called single-vo
28、rtex type) spillways with smooth dissipation of the flow energy throughout the</p><p> length of the tunnel when L r > (60 -- 80)hT or (60 -- 80)dT (where dT and hT are the diameter and height of the tun
29、nel; cf.</p><p> Fig. 1), while the cross-section of the tunnel is either circular or near-circular throughout its length.</p><p> - vortex-type spillways with increasingly greater dissipation
30、 of the energy of the vortex-type flow over a shorter</p><p> length Lr -< (60 -- 80)hT of a noncircular section river diversion tunnel (horseshoe-shaped, square, triangular) which is</p><p>
31、; connected to the eddy chamber either by means of an energy-dissipation (expansion) chamber (Fig. 2) [5, 6] or by means of</p><p> a smooth transition leg [7];</p><p> - spillways with two o
32、r more interacting vortex-type flows in energy-dissipation discharge chambers [8] or in special</p><p> energy dissipators that have been termed "counter-vortex energy dissipators" [2, 4].</p&g
33、t;<p> The terminal portion of the tailrace tunnel of a vortex spillway may be constructed in the form of a ski-jump bucket,</p><p> a stilling basin, or special structures depending on the flow rat
34、e at the exit from the tunnel and on the conditions in the</p><p> channel downstream. The hydraulic system used to link the flow to the tailrace canal may involve the use of either overflowtype</p>
35、<p> or free-fall type structures.</p><p> Vortex spillways with smooth or accelerated [7] dissipation of energy over the entire length of the water conduit</p><p> represent the simples
36、t and most promising types of hydraulic structures.</p><p> Techniques of designing vortex spillways have now been developed and published in numerous studies [2, 7, 8]; in</p><p> particular,
37、 techniques are now available for calculating the hydraulic resistance of individual legs of a route and the flow rates</p><p> and pressures in vortex-type flow. However, for each actual hydraulic project
38、a designed structure must also be evaluated by</p><p> means of model investigations, since it is still not possible to evaluate all the elements of the operation of a spillway by</p><p> mean
39、s of calculations.</p><p> Thus, let us turn our attention to a number of theoretically important problems. A familiarity with these topics will</p><p> be of assistance in the design and inve
40、stigation of vortex spillways.</p><p> Evaluation of the Design and Geometric Dimensions of the Elements of a Spillway. The selection of a particular</p><p> type of spillway depends on a numb
41、er of factors, such as the effective head, the magnitude of the escapage discharge, the</p><p> configuration of the hydraulic project (for example, the use of a river diversion tunnel during the operationa
42、l period or of the </p><p> water conduits of hydroelectric power plants in the construction period), conditions in the discharge of the flow into the</p><p> tailrace channel, topographic and
43、 geological features (in particular, the possible length of the tailrace leg), and the technical</p><p> and economic characteristics.</p><p> Inlet (entry segment in the form of surface or su
44、bsurface offtake). The inlet is designed on the basis of standard</p><p> techniques to maintain its conveyance capacity when functioning in the free-fall regime. Shafts (vertical or inclined). The diameter
45、 of the shaft is made nearly equal to the diameter of the tailrace leg:</p><p> It should be noted that the eddy node is designed so that A = Areq, where Are q is the value of the geometric parameter of the
46、 vortex generator needed to maintain the required prerotation of the flow. For example, for the conditions of the Tupolangskii vortex-type spillway, Are q = 1.4; for the Tel'mamskii hydraulic works, Are q = 0.6; and
47、for the Rogunskii spillway, Ar:q = 1.1.</p><p> A second parameter which characterizes the degree of rotation of the flow on individual legs of the tailrace segment is the integral flow rotation parameter I
48、I [1, 2]. The prerotation 17 0 behind the vortex generating device at a distance 3.0dT</p><p> from the axis of the shaft may be determined on the basis of graphical dependences thus: 17_o = f(A) (Fig. 4).T
49、ailrace tmmd. The overall widths of the tunnel are determined by the type of spillway design which is selected and the method decided on for dissipation of the excess energy (either by means of smooth or increasingly mor
50、e intensive dissipation). Energy Dissipation Chamber. The choice of design and dimensions depends on the rate of rotation of the flow at the inlet to the chamber and on </p><p> From the foregoing discussio
51、n it follows that in those cases in which there is no entrapment of air, vortex spillways</p><p> may be modeled with respect to all the required criteria.</p><p> The situation is different i
52、n the case of aerated flow, which is also difficult to model. In hydraulic models with</p><p> external atmospheric pressure, the volumetric content of air varies slightly as the flow is transported down th
53、e shaft to the</p><p> critical section, whereas in the physical structure, the entrapped air, moving downwards, is compressed by the increasing</p><p> pressure of the liquid. Thus, in the ca
54、se of the spillway at the Teri hydraulic works (Fig. 1), the percent compression in the physical structure is as much as 15-fold, whereas in the open model constructed on a 1:60 scale, the percent compression is in the r
55、ange 1.4-1.5, i.e., one-tenth that of the values found in the field. Moreover, in the experiments using the models, there was an increase noted in the angles of rotation of the flow in the initial segment of the tailrace
56、 tunnel as the escapa</p><p> discharge was decreased and the content of air in the mixture was increased.</p><p> Inasmuch as in the physical object the air content in the critical section is
57、 always insignificant, the increase in the</p><p> angles of rotation as the volume of escapage discharge was decreased was unexpected. To create a reliable model of vortextype</p><p> flow wh
58、en there is a free level in the stem of the shaft and abundant air entrapment by the flow, it is necessary to isolate</p><p> the region of air in the upper and lower ponds from the external atmosphere and
59、to reduce the air pressure in these regions</p><p> through creation of a vacuum in accordance with the geometric scale of the model. Hydraulic Conditions throughout the Spillway Segment. The hydraulic cond
60、itions of operation of vortex spillways</p><p> differ substantially from the corresponding conditions for spillways constructed in the traditional configuration. Let us</p><p> consider these
61、 differences on the basis of the results of laboratory studies of the operational spillways of the Rogunskii</p><p> hydroelectric plant (which includes an energy dissipation chamber) and the spillway of th
62、e Teri hydraulic works (which</p><p> operates with smooth dissipation of energy throughout the length of the tunnel).</p><p> The initial design of the Rogunskii hydroelectric plant called fo
63、r a chute as the terminus structure of the operational</p><p> spillway; it was intended that the flow rate at the end of the chute was to reach 60 m/sec. Understandably, flow rates that are</p><
64、p> this high entail adoption of special measures to protect the streamlined surfaces of the spillway from cavitation damage and the stream course from dangerous degradation. To meet this need, the Tashkent Hydroelect
65、ric Authority, working with the Division of Hydrodynamic Research (now the Central Hydraulic Institute, Society of the Scientific Research Institute on the Economics of Construction), developed several alternative versio
66、ns of spillway designs intended to dissipate a significant portion </p><p> stream course. In one of the versions that were considered, the bend in the turning segment that is part of the traditional config
67、uration of a shaft spillway was replaced by a tangential flow vortex generator. Similarly. vortex-type flow is created throughout the entire length of the tailrace segment. Hydraulic studies were performed on a model tha
68、t simulated a shaft spillway at a scale of 1:50 and consisted of a shaft measuring 13 m in diameter and 148 m in height, a tangential vortex generatin</p><p> The studies that were performed showed that in
69、the shaft which delivers water to the flow rotation node, an intermediate water level is maintained when the flow rate is less than the design rate. This bench mark depends on the magnitude of the escapage discharge and
70、the resistance of the spillway segment situated at a lower level . In the constructions that have been considered here, maximum (design) flow rates through the shaft are achieved when the shaft is flooded and there is no
71、 access to th</p><p> For a tailrace conduit with cylindrical initial segment, the free area downstream increases from 0.7 in the section at a distance 1.3dv from the axis of the shaft to 0.77 in the sectio
72、n at a distance 12.4dr, while the angle of flow rotation and the axial and circumferential flow rates all decrease. In the case of a conical initial segment, the relative area of the gas-vapor core decreases from 0.987 t
73、o 0.874 over the length of the conical segment, while the angle of flow rotation decreases to</p><p> between one-half and two-thirds its initial value over this segment.</p><p> A characteris
74、tic feature of the construction that is being proposed in the present article is the presence of an energy dissipation chamber in which vortex-type flow experiences an abrupt expansion and is rapidly transformed into axi
75、al flow if the discharge of flow from the tailrace tunnel is directed into the atmosphere.</p><p> Equality of the centrifugal acceleration to the free fall acceleration is an essential condition for breakd
76、own of the</p><p> vortex structure of the flow in the tunnel. Once equality is achieved, the mass of water traveling along the roof of the tunnel "caves in," and mixes easily with the air in the
77、flow core. The transformation of vortex-like flow into axial flow that occurs here is accompanied by significant dissipation of energy.</p><p> The rate of energy dissipation differs between the two version
78、s that are being considered here (Fig. 8). In the case of a cylindrical initial segment, energy dissipation occurs smoothly, with only 60% of the initial energy of the flow dissipating over a distance of 15dw (Fig. 8a).
79、In a system with a conical vortex generator and energy dissipation chamber behind the generator, 86% of the initial energy of the flow dissipates as it travels through this segment,</p><p> CONCLUSIONS</
80、p><p> Application of the constructions ot vortex tunnel spillways that we have considered enable us to ensure effective</p><p> dissipation of the excess kinetic energy and overall reliability o
81、f the structure. The operating reliability of vortex spillways that are based on energy dissipation in the tailrace tunnel in accordance with the schemes that have been considered in the present article is confirmed by t
82、he fact that the pressure fluctuations and the intensity of the turbulence dissipate smoothly throughout the tunnel and by the fact that these quantities are low level at the point of discharge of the flow into the</p
83、><p> 支持網(wǎng)頁翻譯,在輸入框輸入網(wǎng)頁地址即可 </p><p> 提供一鍵清空、復(fù)制功能、支持雙語對照查看,使您體驗(yàn)更加流暢</p><p><b> 分享到 </b></p><p><b> 翻譯結(jié)果重試</b></p><p> 抱歉,系統(tǒng)響應(yīng)超時(shí),請稍后再
84、試</p><p> 支持中英、中日在線互譯 </p><p> 支持網(wǎng)頁翻譯,在輸入框輸入網(wǎng)頁地址即可 </p><p> 提供一鍵清空、復(fù)制功能、支持雙語對照查看,使您體驗(yàn)更加流暢</p><p> 抱歉,系統(tǒng)響應(yīng)超時(shí),請稍后再試</p><p> 支持中英、中日在線互譯 </p><
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水利水電畢業(yè)設(shè)計(jì)
- 水利水電畢業(yè)設(shè)計(jì)
- 水利水電工程畢業(yè)設(shè)計(jì)外文翻譯
- 水利水電水閘畢業(yè)設(shè)計(jì)
- 水利水電專業(yè)畢業(yè)設(shè)計(jì)
- 水利水電工程專業(yè)畢業(yè)設(shè)計(jì)外文翻譯
- 水利水電樞紐工程畢業(yè)設(shè)計(jì)
- 水利水電畢業(yè)設(shè)計(jì)全套,包含cad
- 水利水電畢業(yè)實(shí)習(xí)
- 水利水電工程畢業(yè)設(shè)計(jì)
- 水利水電工程畢業(yè)設(shè)計(jì)
- 水利水電
- 水利水電
- 水利水電工程專業(yè)畢業(yè)設(shè)計(jì)
- 水利水電工程水閘畢業(yè)設(shè)計(jì)
- 水利水電工程畢業(yè)設(shè)計(jì)閘門
- 水利水電畢業(yè)論文
- 水利水電工程畢業(yè)設(shè)計(jì)論文
- 水利水電工程專業(yè)水電站畢業(yè)設(shè)計(jì)
- 水利水電 流體力學(xué) 外文翻譯 外文文獻(xiàn) 英文文獻(xiàn) 混凝土重力壩基礎(chǔ)流體力學(xué)行為分析
評論
0/150
提交評論