群體智能算法在圖像壓縮中的應(yīng)用研究.pdf_第1頁
已閱讀1頁,還剩52頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、圖像壓縮的目的是在保證一定的圖像質(zhì)量和滿足任務(wù)要求的條件下,減少原始圖像數(shù)據(jù)量,它可歸結(jié)為一個復(fù)雜的優(yōu)化問題。進(jìn)化算法是解決復(fù)雜優(yōu)化的有效手段,它屬于進(jìn)化計算應(yīng)用領(lǐng)域。因此,本文研究將進(jìn)化算法用于圖象壓縮問題。這種方法不僅使算法操作簡單,而且數(shù)據(jù)處理對CPU和內(nèi)存的要求也不高一用極少的比特數(shù)存儲圖像,提高圖像的質(zhì)量。 本文采用遺傳算法GA(Genetic Algorithm)、粒子群算法PSO(Particle SwarmOpt

2、imization)以及基于量子行為粒子群算法QPSO(Quantum-behaved Particle SwatmOptimization)三類群體智能算法來研究圖像壓縮問題。圖像壓縮是存儲圖像比特數(shù)對誤差函數(shù)的最小化,由于誤差函數(shù)常為多峰的,可能存在多個局部極值,因此一般的梯度算法往往找不到全局最優(yōu)解。PSO算法和QPSO算法屬全局搜索算法,所以用它們來優(yōu)化數(shù)據(jù)存儲量對于提高圖像的質(zhì)量具有重要意義。 首先本文研究基于圖像像素

3、的遺傳算法,從中得到一個有序的圖像像素序列,然后結(jié)合固定聚類、固定類的動態(tài)聚類、不固定類的動態(tài)聚類、局部調(diào)整四種聚類方法來共同實(shí)現(xiàn)壓縮。仿真結(jié)果表明,用局部調(diào)整聚類的GA進(jìn)行圖像壓縮,精度更高,收斂速度更快。 其次研究粒子群優(yōu)化算法PSO應(yīng)用到圖像壓縮處理中的可行性。為了提高粒子群算法的收斂速度,增強(qiáng)算法的全局搜索能力,在此基礎(chǔ)上引入了一種基于量子行為的粒子群優(yōu)化算法模型QPSO,主要是結(jié)合了量子物理的思想修改了PSO的“進(jìn)化”

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論