版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、從抽象層面來看,軟件是由無數(shù)次的變更疊加而成。軟件變更是軟件開發(fā)過程中最重要的部分,也是成本消耗最多的部分,且變更成本隨開發(fā)的進(jìn)展而不斷增長。軟件變更預(yù)測可以指導(dǎo)開發(fā)團(tuán)隊(duì)將資源合理分配到易變更的文件中,從而能夠優(yōu)化系統(tǒng)設(shè)計(jì)、減少變更次數(shù)、控制開發(fā)成本、提高產(chǎn)品質(zhì)量。為了對軟件變更進(jìn)行有效的預(yù)測,研究人員首先提出了項(xiàng)目內(nèi)變更預(yù)測模型,因該模型采用同項(xiàng)目歷史版本數(shù)據(jù)進(jìn)行模型訓(xùn)練使該模型缺乏可擴(kuò)展性,不能有效的應(yīng)用于實(shí)際場景中。為了克服項(xiàng)目內(nèi)
2、變更預(yù)測模型不足,跨項(xiàng)目變更預(yù)測模型被提出,但由于開發(fā)風(fēng)格,程序語言以及開發(fā)過程等差異,其預(yù)測效果通常較差。鑒于此,本文創(chuàng)造性地將深度學(xué)習(xí)方法用于解決軟件變更預(yù)測問題,提出基于深度度量學(xué)習(xí)的軟件變更預(yù)測方法(DML)和基于深度排序?qū)W習(xí)的軟件變更預(yù)測方法(DRank)。本文主要工作如下:
?、偬崛?shù)據(jù)集,并對其標(biāo)準(zhǔn)化和平衡化處理,同時針對現(xiàn)有方法在跨項(xiàng)目預(yù)測中存在效果不佳的情況,本文提出了通過合并多項(xiàng)目訓(xùn)練數(shù)據(jù)集的方式來平衡項(xiàng)目間
3、差異性的訓(xùn)練策略,并在多個機(jī)器學(xué)習(xí)方法上驗(yàn)證了該訓(xùn)練策略的有效性。
?、谔岢隽嘶谏疃榷攘繉W(xué)習(xí)的軟件變更預(yù)測方法,該方法將文件樣本特征轉(zhuǎn)換到高維空間中,使同類樣本間的距離更近,而異類樣本距離更遠(yuǎn)。從而使用該距離對軟件變更進(jìn)行預(yù)測。
?、厶岢隽嘶谏疃扰判?qū)W習(xí)的變更預(yù)測方法,該方法使用排序后的項(xiàng)目文件集進(jìn)行排序模型訓(xùn)練,測試文件集通過排序模型處理后能夠得到按變更可能性降序排列的文件列表,再根據(jù)排序越前面發(fā)生變更的可能性越大
4、的原則對文件樣本進(jìn)行變更預(yù)測。
通過實(shí)驗(yàn)分析發(fā)現(xiàn),多項(xiàng)目合并訓(xùn)練的實(shí)驗(yàn)方法要明顯優(yōu)于單項(xiàng)目訓(xùn)練的實(shí)驗(yàn)方法,其中 F-measure的最高增長率可達(dá)11.16%;并且預(yù)測效果隨合并項(xiàng)目數(shù)量的增加呈穩(wěn)定上升趨勢。模型驗(yàn)證結(jié)果表明,相對傳統(tǒng)機(jī)器學(xué)習(xí)方法,DML在綜合指標(biāo)F-measure上提高率為7.01%。DRank在評估指標(biāo)F-measure上較DML的提高率為15.76%,且在模型訓(xùn)練效率上也處于絕對的優(yōu)勢。將深度學(xué)習(xí)用于軟件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于機(jī)器學(xué)習(xí)的跨項(xiàng)目軟件缺陷預(yù)測研究.pdf
- 基于遷移學(xué)習(xí)的跨項(xiàng)目軟件缺陷預(yù)測.pdf
- 基于深度學(xué)習(xí)的風(fēng)電功率預(yù)測方法研究.pdf
- 基于深度學(xué)習(xí)的分類預(yù)測方法研究及應(yīng)用.pdf
- 基于深度學(xué)習(xí)的機(jī)會網(wǎng)絡(luò)鏈路預(yù)測方法研究.pdf
- 基于深度學(xué)習(xí)的搜索廣告點(diǎn)擊率預(yù)測方法研究.pdf
- 基于深度學(xué)習(xí)的股票價格趨勢預(yù)測方法研究.pdf
- 基于深度學(xué)習(xí)的SDN流量預(yù)測研究.pdf
- 基于深度學(xué)習(xí)的跨語言信息抽取研究.pdf
- 基于深度學(xué)習(xí)的視頻預(yù)測及視頻行人檢測方法研究.pdf
- 基于流形學(xué)習(xí)的軟件缺陷預(yù)測方法研究.pdf
- 基于距離度量學(xué)習(xí)的軟件缺陷預(yù)測方法研究.pdf
- 基于代碼變更的軟件演化評估及預(yù)測.pdf
- 基于半監(jiān)督學(xué)習(xí)的軟件缺陷預(yù)測方法研究.pdf
- 基于深度學(xué)習(xí)的課程推薦與學(xué)習(xí)預(yù)測模型研究.pdf
- 基于深度學(xué)習(xí)框架的藥物特性預(yù)測.pdf
- 基于深度學(xué)習(xí)的文檔分類方法研究.pdf
- 基于深度學(xué)習(xí)的空氣預(yù)熱器轉(zhuǎn)子形變量預(yù)測方法研究.pdf
- 基于深度學(xué)習(xí)的行人檢測方法研究.pdf
- 基于深度學(xué)習(xí)的機(jī)會網(wǎng)絡(luò)拓?fù)漕A(yù)測機(jī)制研究.pdf
評論
0/150
提交評論