版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、RenewableandSustainableEnergyReviews15 (2011) 3417–3422ContentslistsavailableatScienceDirectRenewableandSustainableEnergyReviewsjournalhomepage:www.elsevier.com/locate/rserLifecyclegreenhousegas(GHG)emissionsfromthegener
2、ationofwindand hydropowerHanneLercheRaadal a,?, LucGagnon b, IngunnSaurModahl a, OleJørgenHanssen aa OstfoldResearch,GamleBeddingvei2B,N-1671Kråkerøy,Norwayb Hydro-Québec,75RenéLévesqueW,
3、 Montreal,Qc,Canada,H2Z1A4a r t i c l e i nf oArticlehistory:Received23February2011Accepted11April2011Keywords:LCAGreenhousegasesWindpowerHydropowerElectricityab s t r a c tThis paperpresentsa comprehen
4、siveoverviewof the life cycle GHGemissionsfrom wind and hydropowergeneration,based on relevantpublishedstudies.Comparisonswithconventionalfossil,nuclearandotherrenewablegenerationsystemsare also presented,in
5、order to put the GHG emissionsof windandhydropowerin perspective.Studieson GHGemissionsfrom wind and hydro powershowlargevariationsin GHG emissions,varyingfrom0.2 to 152 gCO2-equivalentsper kW h. The ma
6、inparametersaffectingGHG emissionsare alsodiscussedin this article, in relationto these variations.Thewiderangingresultsindicate a need for stricter standardisedrules and requirementsfor life-cycleassessme
7、nts(LCAs),in order to differentiatebetweenvariationsdue to methodologicaldisparitiesandthosedue to real differencesin performanceof the plants.SinceLCAs are resource-andtime-intensive,developmentof genericGH
8、Gresults for each technologycouldbe an alternativeto developingspecificdatafor each plant.This wouldrequirethe definitionof typicalparametersfor each technology,forexampleatypical capacityfactor for wind
9、 power. Suchgenericdata wouldbe useful in documentingGHGemissionsfrom electricitygenerationfor electricitytradingpurposes.© 2011 Elsevier Ltd. All rights reserved.Contents1.Introduction.. .. .. .. . .. .
10、 . ... . ... . .. . ... . .... .. . . .. . . .. . .. . . .... ...... . . . . .. . ... ... ... ... .... ... .... ... . ... .... . ... . ... . .... . ... . . ... . ... ... . .
11、. .. . .. . . . 34172.Life-cycleassessmentmethodsfor electricitygeneration. . . . ... . . ... ..... .. .. . ... .. ... .. ... .... . ... ... ... . ... ... .... ... . ... . .. . . .. .
12、. . ... ... . .. . ... 34183. Windpower.. . ... .. .. .... . ... .. .. ... . . .. . ... . .. . . . . . .. . . ... . .. . .. . .. . .. . ... . .. . ... .... .. . .. ... ..
13、 ... ... . ... . .. . .. .. ... . ...... . . . . . . . ... . . . . . .. .. . . ... . 34184.Hydropower. . . . .... . . .. . ... . ... .... ... .. .. . .. . . .. . . .. . .. . .
14、 .. . . .. . . ... .... ... ... . .... .... . . .. . . ... ... . ... . ... ... . .. . .... ... .... ... ... . . .. . . . . . . ... . .. . 34195.Wind and hydro powerin perspective.
15、. . .. . . . . .. . . . . . . . .. . ... ... . ... . . ... .. .. ... .. ... . .. . ... ... . ... . ... . . ... .... .... ... . . . ... . ... ... . .. . . . . .. . ... .
16、. 34206.Discussionand conclusions. . ... ... . ... . .. . . . . . . . . . .. . . . . . ... . ... . ... ... . ... ... ... ... ... .. ... .... ... . ... ... . . .. ... . ... . .
17、.. . .. . . .... . .. . ... . .. . .. . .. . . 34207.Recommendationsand outlook. .. ... . . .. . .. .. . . . . . .. . . . . . .. . .. . ... . . . . . ... . .. ... ... . ... ...
18、 .... .... ... . ... ... .. . .. .. ... . ..... . . .. . . . ... . .. . ... . . . . . . . 3420Acknowledgements. .. . . ... . ... ... .... ... . ... . . . . . . . .. . . . .. .
19、 ... ... .... . .. . .. .... . ... ... .. . ... . ... . ... . ... . .. . ... ... . . ... . . ... .. . . ... . . . . . . . .. .. . . ... . 3421References. . .. .... . . ..
20、. . ... ... . ... .. .. .... ... . . .. . .. . . .. . ... . ... ... ..... .. . . . .. . . .... .. . .. . . .. . ... ... .... . .. . ... . ... . .... .... . . . . . . .
21、 .. . . . . . .. . ... . . .. 34211.IntroductionAllenergysystemsemitgreenhousegases(GHGs)1 andcon-tributetoanthropogenicclimatechange.Analysisofallthe? Correspondingauthor.Tel.:+4769351100;fax:+4769342494.E-mailad
22、dress:hlr@ostfoldforskning.no(H.L.Raadal).1 TocompareGHGsemissionsfromdifferentsources,thegasesareindexedaccordingtotheirglobalwarmingpotential(GWP)perunitofweight.GWPistheabilityofaGHGtotrapheatintheatmosphererelativeto
23、anequalamountofcarbondioxide.AccordingtotheIntergovernmentalPanelonClimateChange(IPCC),overa100-yeartimespan,carbondioxide(CO2)assumesthevalueof1.ThetwootherGHGsofimportanceintheseanalysesaremethane(CH4)andnitrousoxide(N
24、2O)which,accordingtoare-evaluationoftheIPCCin2007,takeavalueof25and298,respectively.upstreamanddownstreamprocessespertainingtoapowerplantandtheassociatedGHGemissions,e.g.theelectricitygenerationstage,isnecessaryinorderto
25、obtainacompleteclimateaccountofpowersystems.Ifthisisnotcarriedout,theGHGemissionsresultingfromthevariousoptionsforelectricitygenerationcanbeunderestimated.Forconventionalfossilfueltechnology,upstreamGHGemissionscanbeasmu
26、chas25%ofthedirectemissionsfromthepowerplant.Formostrenewableenergytechnologiesandnuclearpower,upstreamanddownstreamGHGemissionscanaccountforover90%ofcumulativeemissions[1].ThispaperpresentsacomprehensiveoverviewofGHGemi
27、s-sionsfromwindandhydropowergenerationbasedonlife-cycleassessments(LCAs),showingthevariationsinGHGemissionswithinhomogeneouspowergenerationtechnologies.ArangeofGHGemissionsarepresented,followedbyselectedfactoranalyses.13
28、64-0321/$–seefrontmatter ©2011 Elsevier Ltd. All rights reserved.doi:10.1016/j.rser.2011.05.001H.L.Raadaletal./RenewableandSustainableEnergyReviews15 (2011) 3417–3422 3419051015202530354045505560Capacity factor 0 -
29、15% Capacity factor 16 -25% Capacity factor 26 -35% Capacity factor 36 -45% Capacity factor 46 -55% All casesg CO2-equiv./kWh(7) (21)(63)(25)(3) (5)standard devia?onmeanmin - max[x] sample sizeFig.2.Summaryoflifecyc
30、leGHGemissionsfromwindpower[7–28]forselectedcapacityfactors(windconditions).Fig.1showsasummaryoftheGHGemissionsfromalltheinves-tigatedLCAs.Itincludesthefollowingdata:meanvalue,minimumandmaximumvalues,standarddeviationand
31、samplesize.Thesearegroupedintofourcategoriesdependingonturbinesize.ThefigureshowsalargevariationinGHGemissionsfromthewindpowerplants,varyingfrom4.6g[14]to55.4[16]gCO2-equivalentsperkWh.TheminimumandmaximumlevelsofGHGemis
32、sionsrelatetoturbinesof3MWand30kW,respectively.Asseeninthefigure,themeanvaluedecreaseswithincreasingsize,from45.0to10.4gCO2-equivalentsperkWh.Thistrendisinlinewiththeresultsfromotherstudies([1,10,22,29]).AccordingtoLenze
33、nandMunksgaard[22],suchatrendisfoundtobesignifi-cantatthe99%-confidencelevel,confirmingthatthelargevariationinGHGemissionsfromwindturbinesreflectseconomiesofscale,withsmallwindturbinesof1kWrequiringaboutthreetimesmorelif
34、e-cycleenergyperunitpowerthanlargewindturbinesof1MW.Fig.2presentsthesamedataasFig.1,butherethedataaregroupedaccordingtocapacityfactors,representingvaryingwindconditions.2Thefigureshowsthatthemeanvaluedecreaseswithincreas
35、edcapacityfactor,from33.8to8.3gCO2-equivalentsperkWh.How-ever,thetwolargestcapacityfactorgroupshaveapproximatelyequalmeanvaluescountingfor8.3and8.6gCO2-equivalentsperkWh.Thelargestcapacitygrouprepresentsonlyoffshorelocat
36、ions,withlargerinfrastructures.Thiscouldbethereasonforthelargestcapacityfactorgrouphavingaslightlyhighermeanvaluethanthesecondlargestgroup.Theextraenergyinvestedinoffshoreplantscanthereforebebeneficial,astheperformanceis
37、comparabletothebestonshoresites.Itshouldbenotedhoweverthatthesamplesizesinthesetwogroupsarerelativelysmall,havingonly3and5cases,respectively.TheresultsshowadecreaseinGHGemissionsinrelationtoincreasedcapacityfactors.These
38、wereexpectedasthecapacityfactordefinestheelectricityproducedduringthelifetime,andtheGHGemissionsareexpressedbykWh.AnanalysisoftheassessedGHGemissionsfromwindpowergeneration,accordingtoanalysistype,hasalsobeencarriedout.T
39、hisshowsthattheGHGresultsappeartoincreasewhenchangingfromprocessanalysistoinput–outputanalysis.Thiscorresponds2 Thecapacityfactorisdetermined[8]astherecordedelectricitygenerationovertheyeardividedbyinstalledcapacityandmu
40、ltipliedby8760h,sothehighercapac-ityfactor,thebetterwindconditions.withtheresultsfromamultivariateregressionanalysis,examiningtheinfluenceofmethodology,scopeandtechnologicalmaturity[22]fromwhichitcanbeconcludedthattheres
41、ultsoftheenergyintensity(andGHGemissions)increaseunderachangefrompro-cesstoinput–outputanalysis.Further,theresultsfromtheinvestigatedwindpowercasesclearlyshowthattheinfrastructurestageisthelifecyclestagecon-tributingmost
42、toGHGemissionsfromwindpowergeneration.Itaccountsforapproximately90–99%ofthetotalGHGemissions.Thislifecyclestageincludesmaterialproductionandprocessing,wastedisposal,transport,assemblingandinstallation.Steelproductionisth
43、eactivitycontributingmosttoGHGemissions,followedbycon-creteproduction.TheGHGemissionsattheoperationalstageofwindpowerarealmostnegligibleinrelationtothetotal.4.HydropowerThissectionsetsouttheGHGemissionsfromthegenerationo
44、fhydropower,basedon39LCAs([7,16,17,20,30–37]), publishedbetween1996and2010.Theresultsarepresentedfor1kWhhydrogenerated.Withtheexceptionofonestudy,gridlossesandinfras-tructurerelatedtothegridareexcludedfromtheanalyses.Acc
45、ordingtoGagnonandvandeVate[30],thetwomajorsourcesofemissionsforhydropowerareactivitiesrelatingtothebuildingofdams,dikesandpowerstationsandthedecompositionofbiomassfromlandfloodedbythereservoir,producingCO2 andCH4 emissio
46、ns.Fig.3presentstheGHGemissionsforthestudiedsamplesofhydropowercategorisedintoreservoirplants(withandwith-outpotentialGHGemissionsfromfloodedland)andrun-of-riverplants.ThefigureshowslargevariationsinGHGemissionsfromthese
47、hydropowerplants,varyingfrom0.2[33]to152[16]gCO2-equivalentsperkWh.ThelargevariationsinGHGemissionsfromreservoirhydropowercanforthemostpartbeexplainedbydif-ferencesinGHGemissionsfromfloodedland,asthestandarddeviationfort
48、hisgroupis54.5.Recentresearch[38],showsthatthisdatacanbemisleading,asthereportedemissionsmaynotrepresentthe“net”emissionsforwhichreservoirsareresponsible.MostLCAsreport“gross”emissionsfromreservoirs,asmeasuredfluxesoverr
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水電工程專業(yè)畢業(yè)論文翻譯--水電和風(fēng)電的生命周期溫室氣體排放
- 水電工程專業(yè)畢業(yè)論文翻譯--水電和風(fēng)電的生命周期溫室氣體排放
- 水電工程專業(yè)畢業(yè)論文翻譯--水電和風(fēng)電的生命周期溫室氣體排放
- 水電工程專業(yè)畢業(yè)論文翻譯--水電和風(fēng)電的生命周期溫室氣體排放 (英文).pdf
- 水電工程專業(yè)畢業(yè)論文翻譯--水電和風(fēng)電的生命周期溫室氣體排放 (英文).pdf
- 水電工程專業(yè)畢業(yè)論文翻譯--水電和風(fēng)電的生命周期溫室氣體排放.docx
- 水電工程專業(yè)畢業(yè)論文翻譯--水電和風(fēng)電的生命周期溫室氣體排放.docx
- 大學(xué)水利水電工程專業(yè)畢業(yè)論文
- 水利水電工程管理專業(yè)畢業(yè)論文
- 水利水電工程管理專業(yè)畢業(yè)論文
- 水利水電工程專業(yè)專升本畢業(yè)論文
- 2017屆水利水電工程專業(yè)專升本畢業(yè)論文
- 水利水電工程專業(yè)畢業(yè)設(shè)計外文翻譯
- 畢業(yè)設(shè)計(論文)-水電工程成本控制
- 水利水電工程專業(yè)水電站畢業(yè)設(shè)計
- 水利水電工程畢業(yè)論文范文預(yù)覽
- 水電工程各類做法
- 水利水電工程專業(yè)畢業(yè)設(shè)計
- 一級水電工程資質(zhì)包括什么?水電工程承包范圍?
- 水利水電工程管理專業(yè)
評論
0/150
提交評論