版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and shar
2、ing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.In most cases authors are permitted to
3、 post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encour
4、aged to visit:http://www.elsevier.com/authorsrightsAuthor's personal copyF.Congetal./JournalofNeuroscienceMethods223 (2014) 74–84 75fMRIdataincludetheblockdesignandtheevent-relateddesign(Panetal.,2011).Fortheblockdes
5、ign,thecontrastoffMRIdatabetweenthestimulusonsetandthestimulusoffsetisanalyzed.Fortheevent-relatedone,thedesignmatrixcanbeusedforregressionduringwhichthetemporalcourseofavoxelandthecorrespondingspatialmaparelearned.Witht
6、hedevelopmentoffMRIresearch,somestudiesevenreportedfMRIdataobtainedduringarealisticexperiencewherethestimulusisnaturalistic,continuousandlong(Allurietal.,2012;Hassonetal.,2004;HaynesandRees,2006;Kauppietal.,2010;Kayetal.
7、,2008;SpiersandMaguire,2007).Suchnaturalisticbraindatacanprovidemuchricherbrainresponsesforresearchandittendstobedifficulttodirectlyobtaintheprecisecontrastordesignmatrixaccordingtotheexperimentaldesign.Inordertoprocessa
8、ndanalyzesuchnaturalisticbraindata,theinter-subjectcorrelation(ISC)(Hassonetal.,2004)hasbeenwidelyused.ISCisbasedonthecorrelationbetweentwotemporalcoursesoftwoparticipantsgiventhesamespatiallocation,i.e.,thevoxelwiththes
9、amecoordinates.Recently,basedonacousticalfeatureextractionalgorithmsusedinmusicinformationretrieval,musicalfeaturesofthemusicstimulushavebeenextractedandcorrelatedtothetemporalcourseofeachvoxelofthefMRIdata(Allurietal.,2
10、012).DuetothelargeamountofvoxelsinfMRIdata,thenum-berofmultiplecomparisonsinsuchcorrelationanalysesislargeaswell.Therefore,somestatisticalmethodsaretypicallyusedtoavoidthefalsealarm.Onestraightforwardmethodistoreducethen
11、umberoftimesofcorrelations.Forexample,whenindependentcomponentanalysis(ICA)isappliedtodecomposefMRI(McKeownetal.,1998),thenumberofICAcomponents(usuallylessthanhundreds)ismuchsmallerthanthenumberofvoxels(hundredsofthousan
12、ds).Thedatadrivendataprocessingmethods,likeICA,havebeenusedtoprocessnaturalisticbraindata(Malinenetal.,2007;Ylipaavalniemietal.,2009)andthesimilaritybetweenthetemporalcoursesofthestimulusandthetemporalcoursesofICAcompone
13、nts(i.e.,spatialmaps)wasexamined.We findthatsomekeyissuesinapplyingICAtodecomposenaturalisticbraindatahavenotbeenwelladdressedyet.Thisstudyisdevotedtoanalyzingeverystepfortheapplicationofthisadvancedmethod.ForICA,theFas
14、tICAalgorithm(Hyvärinen,1999)wasused.Since1998(McKeownetal.,1998)ICAhasbeenextensivelyusedforthefMRIdataprocessing.Fordifferentdefinitionsofsamplesandvariablesinthelineartransformmodel,theapplicationofICAcanbedivide
15、dintotemporalICAandspatialICA(McKeownetal.,1998;Erhardtetal.,2010;Calhounetal.,2001;Huetal.,2005;Leeetal.,2011).Intheformer,anindependentcomponentisatem-poralcourse.Forthelatter,anindependentcomponentisavoxelseries,which
16、canbeassembledintoaspatialmapoffMRI.GiventhetypicaldimensionsoffMRIdatasets,thespatialICAisusuallypre-ferredbothfortheplausibilityoftheunderlyingneurophysiologicalmodelandforcomputationalrequirements.Hence,thespatialICAi
17、schosenforthefMRIdataanalysisinthisstudy.Hereinafter,whenICAismentioned,itisreferredtospatialICA.ICAcanbefurtherdividedintoindividualICAforanindi-vidualdataset(e.g.,includingoneparticipant’sdata)andgroupICAfortheconcaten
18、ateddataset(e.g.,includingmultiplepar-ticipants’data)(Calhounetal.,2009).GroupICAcanbeevencategorizedasthetemporalconcatenationapproach(e.g.,multi-pleparticipants’dataareconcatenatedinthetimedomain)andthespatialone(e.g.,
19、multipleparticipants’dataareconcatenatedinthespatialdomain)(Calhounetal.,2009).Thetemporalandspatialapproachesallowexaminingindividualtemporalcoursesandindividualspatialmaps,respectively,andtheyprovidecom-monspatialmapsa
20、ndcommontemporalcoursesovermultipleparticipants,respectively.Actually,groupICArequiresadditionalassumptionsbesidesthoseneededbyindividualICA(Congetal.,2013).ItisunknownwhetherfMRIdataduringreal-worldexpe-riencescanmeetth
21、eadditionalassumptions.Consequently,bothindividualICAandgroupICAareappliedtodecomposethefMRIdataheretoexaminewhethersimilarfindingscanbeobtainedbybothmethods.NomatterwhichmeansofICAisapplied,itisverycriti-caltodeterminet
22、henumberofextractedcomponents.Modelorderselection(MOS)hasbeenappliedforthispurpose(Lietal.,2007)andtheinformationtheorybasedMOSalgorithmsareoftenused,forexample,Akaike’sinformationcriterion(AIC)(Akaike,1974),MinimumDista
23、nceLength(MDL)(Rissanen,1978),andKullback–Leiblerinformationcriterion(KIC)(Cavanaugh,1999).ThistypeofMOSalgorithmsassumesthedataareindependentlyandidenticallydistributedandthecollectedbraindatahavetoberesampledtosatisfyt
24、hisassumptionforMOS(Lietal.,2007).Inthisstudy,weexamineanotherrecentlydevelopedalgorithmcalledSORTE(Heetal.,2010)forMOSoffMRIdata.SORTEisveryeffi-cientinthecomputinganddoesnotrequiretheresamplingprocess(Heetal.,2010).Alt
25、houghMOShasbeenextensivelyusedforfMRIdata,therearefewexplicitmethodstovalidatewhethertheesti-mationofMOSisaccurateornotfortherealfMRIdata.Recently,asimulationstudyhasshownthatMOScannotpreciselyestimatethenumberofsourcesi
26、nthelineartransformmodelwhensignal-noise-ratio(SNR)islow(e.g.,lessthan0dB),andthatwhenSNRislowSORTEandMDLtendtooverestimateandunderestimatethetruenumberofsources,respectively(Congetal.,2012).Inthisstudy,SORTE,AIC,MDLandK
27、ICareperformedontheconvention-allypreprocessedfMRIdataandfurtherpreprocessed(byadigitalfilter)fMRIdatatoexaminetheirperformanceinestimatingthenumberofsourcesinfMRIdataofindividualparticipants.ForindividualICA,clusteringt
28、heextractedICAcomponentsoffMRIdataisusuallyappliedtofindthecommoncomponentsacrossdifferentparticipants,andthesimilaritymatrixbasedhierarchicalclusteringhasbeenoftenused(Calhounetal.,2009;Espositoetal.,2005).ThenumberofIC
29、Acomponents(n)isalwaysmuchsmallerthanthenumberofvoxels(p).InfMRIdata,pcanbehundredsofthousands.Fortheveryhigh-dimensionaldata,dimensionreduc-tiontendstobeperformedbeforemachinelearning,likeclusteringandclassification.Int
30、hisstudy,arecentlydevelopeddimensionreductionmethodcalleddiffusionmap(DM)(CoifmanandLafon,2006)isappliedtoreducethedimensionofthedatatobeclustered(i.e.,thenICAcomponentshere)frompto2,andthen,thedegreeofclosenessofthenICA
31、componentscanbevisualizedbythescatterplotofthetwodimensionaldata.Furthermore,thespectralclus-tering(Nadleretal.,2006)isusedtofindthecommoncomponentsacrossmultipleparticipantsinthisstudy.ForgroupICA,thetemporalconcatenati
32、onseemstooutperformthespatialconcatenation(Calhounetal.,2009).Indeed,thiscon-clusionisbasedongroupICAforfMRIdatamostlyintheblockorevent-relateddesigns.ItisunknownwhethertheconclusionisvalidforthefMRIdataduringreal-worlde
33、xperiences.Therefore,bothapproachesaretriedtodecomposethefMRIhere.Inordertoaddresstheissuesmentionedabove,fMRIdataofelevenmusiciansinafree-listeningexperiment(Allurietal.,2012)areusedinthisstudy.2.Method2.1.Datadescripti
34、on2.1.1.fMRIElevenhealthyparticipants(withnoneurological,hearingorpsychologicalproblems)withformalmusicaltrainingparticipatedinthestudy(meanage:23.2±3.7SD;5females).TheparticipantswerescannedwithfMRIwhilelisteningto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)學外文翻譯--利用獨立分量分析對自然連續(xù)音樂刺激下功能性磁共振(fmri)分解中關鍵性問題的研究
- 醫(yī)學外文翻譯--利用獨立分量分析對自然連續(xù)音樂刺激下功能性磁共振(fmri)分解中關鍵性問題的研究(譯文)
- 腦卒中康復治療及功能性核磁共振(FMRI)的臨床研究.pdf
- 復雜對指與功能性電刺激下正常與受損脊髓的功能核磁共振研究.pdf
- 胎兒功能性磁共振成像研究.pdf
- 針對異形幕墻設計中的關鍵性問題分析
- 牙髓冷刺激痛及牙痛期待的功能性磁共振成像研究.pdf
- 公路工程施工中的關鍵性問題分析
- 基于建筑節(jié)能監(jiān)理中的關鍵性問題分析
- 村土地利用規(guī)劃編制關鍵性問題分析
- 村土地利用規(guī)劃編制關鍵性問題分析
- 移動IP網(wǎng)絡中關鍵性問題的研究.pdf
- 村土地利用規(guī)劃編制關鍵性問題分析
- 村土地利用規(guī)劃編制關鍵性問題分析
- 村土地利用規(guī)劃編制關鍵性問題分析
- 村土地利用規(guī)劃編制關鍵性問題分析
- 面部觸覺及熱刺激痛的功能性核磁共振成像研究.pdf
- 橋梁健康監(jiān)測中的關鍵性問題研究.pdf
- 關于建筑電氣安裝中的關鍵性問題探析
- 針灸腦反應的功能性磁共振成像研究.pdf
評論
0/150
提交評論