版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、合成生物學(xué)(Synthetic biology)(概念、原理、應(yīng)用),馬飛,人工染色體(技術(shù)),BAC(細(xì)菌人工染色體):Bacteria…以細(xì)菌作為對象,將DNA片段與質(zhì)粒重組后轉(zhuǎn)入細(xì)菌中繁殖YAC(酵母人工染色體):Yeast…以酵母作為對象PAC(噬菌體人工染色體):Phagemid…以噬菌體作為對象TAC(可轉(zhuǎn)化的細(xì)菌人工染色體) MAC(哺乳類人工染色體)…,合成生物學(xué)應(yīng)運而生…,Synthetic Biol
2、ogy,What is Synthetic Biology?,Taking an engineering approach to design and applying it to Biology使用工程策略設(shè)計并應(yīng)用于生物學(xué),What is Synthetic Biology?1. Biology2. Chemistry3. Engineering4. Re-Writing,BiologistsChemistsE
3、ngineers“Re-Writers”,“The code is 3.6 billion years old. It’s time for a re-write.” -Tom Knight,Biology“Test models by building them”,合成生物學(xué),指人們將“基因”連接成網(wǎng)絡(luò),讓細(xì)胞來完成設(shè)計人員設(shè)想的各種任務(wù)。例如把網(wǎng)絡(luò)同簡單的細(xì)胞相結(jié)合,可提高生物傳感性,幫助檢查人員確定地雷或生物武器的
4、位置。再如向網(wǎng)絡(luò)加入人體細(xì)胞,可以制成用于器官移植的完整器官。,人工合成脊髓灰白質(zhì)炎病毒cDNA,美國紐約大學(xué)Wimmer 實驗室于2002年報道了化學(xué)合成 脊髓灰白質(zhì)炎病毒cDNA,并用RNA聚合酶將它轉(zhuǎn) 成有感染活力的病毒RNA。開辟了利用已知基因組序列,不需要天然模板,從化合物單體合成感染性病毒的先河。,,Wimmer從裝配平均長度為69 bp的寡核苷酸入手,結(jié)合了化學(xué)合成與無細(xì)胞體系的從頭合成,用了3 年時間完成了這個劃時代
5、的工作。,Venter 實驗室發(fā)展了合成基因組,Φ X-174 噬菌體基因是單鏈環(huán)狀 DNA,是歷史上第一個被純化的DNA 分子,也是第一個被測序的DNA分子。Φ X- 174 噬菌體對動植物無害,是合適的合成研究對象。美國Venter 實驗室發(fā)展了合成基因組的工作, 該實驗室只用兩周就合成了Φ X-174 噬菌體基因 (5,386bp) 。Venter實驗室的技術(shù)改進(jìn)主要有:(1)用凝膠來提純寡核苷酸以減少污染;(2) 嚴(yán)
6、格控制退火連接溫度來防止與不正確的序列發(fā)生連 接;(3)采用聚合酶循環(huán)裝置來裝配連結(jié)產(chǎn)物。,合成生物學(xué)國際會議,2004 年6 月在美國麻省理工學(xué)院舉行了第一屆 合成生物學(xué)國際會議。會上除討論了科學(xué)與技術(shù)問 題外,還討論了合成生物學(xué)當(dāng)前與將來的生物學(xué)風(fēng)險,有關(guān)倫理學(xué)問題,以及知識產(chǎn)權(quán)問題。隨著這個領(lǐng)域的發(fā)展,對于合成生物學(xué)的安全性的考慮愈來愈多。現(xiàn)在不僅通過合成生成病毒,而且已經(jīng)可以合成細(xì)菌。,合成生物學(xué)開辟了設(shè)計生命的前景,一
7、方面有可能合成模仿生命物質(zhì)特點的人工化學(xué)系統(tǒng);另一方面也可能重新設(shè)計微生物如Keasling 實驗室向大腸桿菌中導(dǎo)入青蒿與酵母的基因,使大腸桿菌能在調(diào)節(jié)下合成青蒿素,從而顯示了有效而價廉的治療瘧疾的前景合成生物學(xué)今后將能生成自然界不存在的新的微生物。,應(yīng)用示例,Schultz 實驗室研究向大腸桿菌蛋白質(zhì)生物合成裝置中添入新組份,使之能通過基因生成非天然的氨基酸,結(jié)果取得了成功。但是要在真核細(xì)胞做到這一點還有難度。2003年,Sch
8、ultz 實驗室報道了一種向酵母加 入非天然氨基酸密碼子的方法,成功地向蛋白質(zhì)中導(dǎo)入了5 種氨基酸。目前,能摻入到蛋白質(zhì)的非天然氨基酸已有80多種。今后將可以直接向蛋白質(zhì)導(dǎo)入順磁標(biāo)記、金屬結(jié)合、光敏異構(gòu)化等的氨基酸,促進(jìn)蛋白質(zhì)結(jié)構(gòu)與功能的研究。,應(yīng)用示例,Brenner 提出向細(xì)胞DNA中摻入天然不存在的堿基來發(fā)展人工遺傳系統(tǒng), 支持人工生命形式。合成生物學(xué)也將對生命起源,其他生命形式的研究作出貢獻(xiàn)。,控制生命,目前,研究人
9、員正在試圖控制細(xì)胞的行為,研制不同的基因線路———即特別設(shè)計的、相互影響的基因。波士頓大學(xué)生物醫(yī)學(xué)工程師科林斯已研制出一種“套環(huán)開關(guān)”,所選擇的細(xì)胞功能可隨意開關(guān)。加州大學(xué)生物學(xué)和物理學(xué)教授埃羅維茨等人研究出另外一種線路:當(dāng)某種特殊蛋白質(zhì)含量發(fā)生變化時,細(xì)胞能在發(fā)光狀態(tài)和非發(fā)光狀態(tài)之間轉(zhuǎn)換,起到有機(jī)振蕩器的作用,打開了利用生物分子進(jìn)行計算的大門。,,維斯和加州理工學(xué)院化學(xué)工程師阿諾爾一起,采用“定向進(jìn)化”的方法,精細(xì)調(diào)整研制線路,
10、將基因網(wǎng)絡(luò)插入細(xì)胞內(nèi),有選擇性地促進(jìn)細(xì)胞生長。,發(fā)展方向,維斯目前正在研究另外一群稱為“規(guī)則系統(tǒng)”的基因,他希望細(xì)菌能估計刺激物的距離,并根據(jù)距離的改變做出反應(yīng)。該項研究可用來探測地雷位置(TNT:生物傳感器)。,,維斯另一項大膽的計劃是為成年干細(xì)胞編程促進(jìn)某些干細(xì)胞分裂成骨細(xì)胞、肌肉細(xì)胞或軟骨細(xì)胞等,讓細(xì)胞去修補(bǔ)受損的心臟或生產(chǎn)出合成膝關(guān)節(jié)。盡管該工作尚處初級階段,但卻是生物學(xué)調(diào)控領(lǐng)域中重要的進(jìn)展。,J. Craig Vent
11、er:基因組替換,成功利用基因組取代技術(shù),將一種細(xì)菌改變?yōu)榱硪环N與之親緣關(guān)系較為緊密的另一細(xì)菌。這種由J. Craig Venter 進(jìn)行的 “移植(transplantation)”技術(shù),有望將合成基因組插入細(xì)胞,用于生產(chǎn)合成生命。用Mycoplasma mycoides的基因組取代與之關(guān)系密切的 Mycoplasma capricolum的基因組C. Lartigue et al. "Genome transplant
12、ation in bacteria: Changing one species to another" Science, June 28, 2007.,人類歷史上第一個人造染色體合成成功,美科學(xué)家稱“人造生命”技術(shù)已被掌握最具爭議的美國著名科學(xué)家克雷格·文特爾宣布,他的研究小組已經(jīng)合成出人類歷史上首個人造染色體,并有可能創(chuàng)造出首個永久性生命形式,以此作為應(yīng)對疾病和全球變暖的潛在手段。該研究部分由美國能源部出資,希
13、望藉此研制出新型環(huán)保燃料。由文特爾召集,諾貝爾醫(yī)學(xué)獎獲得者漢密爾頓·史密斯領(lǐng)導(dǎo)的研究小組在這方面已經(jīng)進(jìn)行了5年研究。文特爾已用化學(xué)藥品在實驗室中研制出一種合成染色體。,文特爾研究小組研制出的這種新型染色體即實驗室合成支原體(Mycoplasma laboratorium),是一種經(jīng)過簡化拼接的生殖支原體(Mycoplasma genitalium)DNA序列,他們將這種合成支原體移植到活細(xì)胞中,使之在細(xì)胞中起主控作用,變換成
14、一種新的染色體。按照實驗計劃,最終這個染色體將控制這個細(xì)胞并變成一個新的生命形式。這種新單細(xì)胞生物體被命名為“合成器”,受381個基因控制,包含56萬個堿基對。這些基因是維持細(xì)菌生命所必備的,使它能夠攝食和繁殖。由于新的生物體是在現(xiàn)存生物體上搭建,其繁殖和新陳代謝仍然依賴原來生物體的胞內(nèi)機(jī)制。從這一角度看,它并非完全意義上的新型生命形式。但這種給特定基因賦予特定任務(wù)的觀點已被眾多生物學(xué)家廣泛接受。,“這是人類自然科學(xué)史上一次重
15、大進(jìn)步,顯示人類正在從閱讀基因密碼走向有能力重新編寫密碼,這將賦予科學(xué)家新的能力,從事以前從未做過的研究。”他希望這項突破有助于發(fā)展新能源,應(yīng)對氣候變化造成的負(fù)面影響。如創(chuàng)造出具有特殊功能的新微生物,可被用作替代石油和煤炭的綠色燃料,或用來幫助清除危險化學(xué)物質(zhì)或輻射等;還可用來合成能吸收過多二氧化碳的細(xì)菌,為解決氣候變暖貢獻(xiàn)力量。,然而制造永久生命形式的前景極具爭議性,有可能激起道德、倫理等方面的激烈辯論。加拿大生物倫理學(xué)組織ET
16、C團(tuán)體主任帕特·穆尼說,文特爾制造出了“一個基架,在此基架上人們幾乎可以制造出任何東西”,“它可以用于研究新型藥物,也可以用于對人類產(chǎn)生巨大威脅的生物武器”。,2009:Venter:Science,把蕈狀支原體的基因組加以改造,使它能夠終移植到山羊支原體內(nèi),形成了一個新的蕈狀支原體細(xì)胞。這也是今年這篇科研論文的雛形,在國外的科學(xué)媒體上曾經(jīng)引發(fā)熱烈的討論。,2010年的重要大事:“人造生命”誕生,John Craig Ven
17、ter攪亂了(生命)科學(xué)界,《用化學(xué)合成的基因組構(gòu)建一個細(xì)菌細(xì)胞》,Venter的實驗http://www.science-weekly.cn//skhtmlnews/2010/6/1090.html,實驗對象:蕈狀支原體。支原體是已知的可以自由生活的最小生物,也是最小的原核細(xì)胞。是一種原核微生物, 內(nèi)部結(jié)構(gòu)很簡單,基因組僅有一百多萬堿基對,遠(yuǎn)小于真核生物基因組十億級的堿基數(shù)量,這也是Venter選擇操作它的原因。Venter早
18、在1995年就對生殖支原體測序,并致力于研究維持自由生命的最小基因組。在2008年,Venter的團(tuán)隊合成了長達(dá)59萬堿基對的生殖支原體基因組。此后,他們選擇生長速度更快的蕈狀支原體來做實驗。如果僅僅從技術(shù)上來說,Venter做了一個無懈可擊的實驗,“人造生命”思路和流程都做得無懈可擊。,三個步驟:合成、組裝和移植,合成 :蕈狀支原體的基因組是一條大片段的DNA分子,序列是A、T、G、C四種脫氧核糖核苷酸的排列組合。通過實驗
19、確定維持其生命周期的最小基因組,并加上4個“水印基因”作為標(biāo)記。用計算機(jī)精確計算需要合成DNA分子序列,并用化學(xué)方法合成A、T、G、C堿基,并使其按所要求序列延伸。這是它被稱為“人造生命”或者“化學(xué)合成”的關(guān)鍵。Venter用化學(xué)方法合成了一千多個約1kb的DNA片段,作為這次組裝的基本材料。,組裝:因為合成生物學(xué)技術(shù)上的局限,不能直接合成上萬堿基對的DNA大分子,所以Venter等人巧妙地借助啤酒酵母和大腸桿菌的幫助,把1Kb
20、的DNA分子有序準(zhǔn)確的連成超過1000kb的片段。移植: Venter等把這個合成基因組移植到不含限制性酶切系統(tǒng)的山羊支原體中,基因組能使用后者的酶系統(tǒng)進(jìn)行自我復(fù)制,經(jīng)過多代繁殖后,長成的菌落已經(jīng)純粹由蕈狀支原體組成。,Venter:“創(chuàng)造了一個計算機(jī)為父母的生命”,,JCVI:將8個由60個核苷酸組成的DNA片段,首次人工合成實驗老鼠的線粒體基因組,,使用8個只含有60個核苷酸的DNA片段,讓它們同酶和化學(xué)試劑的混合物相結(jié)合,
21、在50℃下孵化1小時,5天內(nèi)合成出了實驗鼠的線粒體基因組,得到的基因組能夠糾正具有線粒體缺陷的細(xì)胞內(nèi)的異常。,用途:生物能源、生物除污…,Venter下一步的計劃就是合成某種海藻基因組,這種新型海藻可以通過光合作用把空氣中的二氧化碳轉(zhuǎn)化成汽油或者柴油等清潔能源,從而有效解決目前的氣候變化和能源危機(jī)。疫苗、藥物、生物能源、生物除污等,What is Synthetic Biology?,——從原理角度來看,Synthetic Biol
22、ogy,Undergraduates in Synthetic Bio.,international Genetically Engineered Machines,http://parts.mit.edu/registry/index.php/Main_Page,Lego Assembly for DNA Parts,http://parts.mit.edu/registry/index.php/Assembly:Standard_
23、assembly,Self-organized Pattern Formation,What can you make in SB?,Arsenic Detector,膿毒癥,砷,Modifying life,Biotechnology – Techniques that use living organisms or parts of organisms to produce a variety of products (from m
24、edicines to industrial enzymes) Genetic Engineering – Introduction of genetic changes (add, modify, delete) into an organism to achieve some goalSynthetic Biology – Create novel biological functions and tools by modify
25、ing or integrating well-characterized biological components (i.e. genes, promoters) into higher order genetic networks,Synthetic Biology History,1970 – First gene synthesized from scratch (alanine tRNA)1978 – Nobel priz
26、e awarded to Werner Arber, Daniel Nathans and Hamilton Smith for the discovery of restriction enzymes 1978 (Boyer at UCSF) – A synthetic version of the human insulin gene was constructed and inserted into the bacterium
27、E. coli.1980 – Kary Mullis invents PCR1991 – Affymetrix chip-based oligonucleotide synthesis2003 – First iGEM competition, creation of standardized parts libraries at MIT,Biotechnology 1.0 Research Workflow,1. Concept
28、,2. Collect DNA fragments (PCR, isolation, vendors, etc),,,6. Transform,,7. Test,3. Bench work,5. Verify DNA,4. Sequence,,,DNA synthesis costs are dropping,For example the bacteria Mycoplasma genitalium has the smallest
29、genome out of all living cells: 517 genes over 580 kb. Minimal costs of oligo creation (not including error-checking):Mid 1990s: $1/bp = $580,000Circa 2000: $0.35/bp = $203,0002006: $0.11/bp = $63,800Ambitious predi
30、ction of not-too-distant future (Church et al, 2004): $0.00005/bp = $29,Synthesis lengths are increasing,,Commercial DNA Synthesis Companies,,Data Source: Rob Carlson, U of W, Seattle,,BioneerSouth Korea,,CinnagenTehr
31、an, Iran,,Takara BiosciencesDalian, China,,Inqaba BiotecPretoria, South Africa,,FermentasVilnius, Lithuania,,Bio S&T, Alpha DNA,BiocorpMontreal, Canada,,GENEARTRegensberg, Germany,,MWGBangalore, India,,Zelinsk
32、y InstituteMoscow, Russia,,ScinoPharmShan-hua, Taiwan,,GenosphereParis, France,,BiolegioMalden, Netherlands,,AmbionAustin, Texas,,BiosearchNovato, California,,Bio-SynthesisLewisville, Texas,,ChemgenesWilmington,
33、Mass.,,BioSpringFrankfurt am Main, Germany,,BiosourceCamarillo, CA,,DharmaconLafaette, Co.,,CyberGene ABNovum, Sweden,,Cortec DNAKingston, Ontario, CA,,EurogentecBelgium, U.K.,,DNA TechnologyAarhus, Denmark,,Genem
34、ed SynthesisS. San Francisco, CA,,DNA 2.0Menlo Park, CA,,MetabionMunich, Germany,,MicrosynthBalgach, Switzerland,,Japan Bio ServicesJapan,,Blue Heron BiotechnologyBothell, WA,,,GeneworksAdelaide, Australia,,Imperi
35、al Bio-MedicChandigarh, India,,Bioserve BiotechnologiesHyderabad, India,,GenelinkHawthorne, NY.,DNA Synthesis (Caruthers method),Error Rate: 1%0.9950 = 0.60300 seconds per step,Microarray oligonucleotide synthesis,T
36、he power of parallelism,Chip-based versus linear synthesis,Oligonucleotides synthesized,Single-stranded fragments of 50-90nucleotides 3’-overlapping next fragment by 17 nucleotides (Tm calculated 52-56°),Steps 1 t
37、o 5 involve multiple rounds of PCR (heating to 95°, cooling to 56°, and PCR at 72°).Number of rounds depends on number of fragments. Carried out by PCR machine.,Final step of amplification of complete g
38、enedriven by use of excess of terminal single-stranded fragments,PCR-based oligo ligation,In theory, the scale of synthesis is unlimited,Biotechnology 2.0 Research Workflow,,,,,1. Concept,2. Design / debug/ test,4. Des
39、ign oligos,6. Transform,,,7. Test,5. Synthesize DNA,3. Run code,,,What are the implications of DNA synthesis capacity + freedom of information?,The problem: “Dual Use” Research,Dual use research includes life sciences re
40、search:With legitimate scientific purpose That may be misused to pose a biologic threat to public health and/or national security.,How easy is it to get this technology?,What can we do?,Number of Individuals,,Individ
41、ual’s Intent,,,honorable,dishonorable,,,,,Bin Laden Genetics, Inc.,DisgruntledResearcher,Garage Bio-Hacker,BasicResearcher,,Risk spectrum,Basic logic circuits,Borrowing from electrical engineering,Protein Expression B
42、asics,RNA polymerase binds to promoterRNAP transcribes gene into messenger RNARibosome translates messenger RNA into protein,,,Z,,,Z Promoter,Z Gene,,Protein,Transcription,RNA Polymerase,DNA,,Translation,Messenger RNA
43、,Regulation Through Repression and Induction,Repressor proteins can bind to the promoter and block the RNA polymerase from performing transcriptionThe DNA site near the promoter recognized by the repressor is called an
44、operatorThe target gene can code for another repression protein enabling regulatory cascades,,,,,Z Promoter& Operator,Z Gene,R Gene,,R,R,,,,R Promoter,TranscriptionTranslation,DNA Binding,RNA Polymerase,,,Logic Ci
45、rcuits,Proteins are the wires/signalsPromoters + decay implement the gatesAny finite-state digital circuit can be builtFor example, X or Y ? Z,,,,,,,,,X,Y,,,R1,,Z,,R1,R1,,,X,,,,Y,,,,Z,,=,,gene,,gene,,gene,Transcriptio
46、n-Based Inverter,Protein concentrations are analogous to electrical current BUT… proteins do not function in an isolated system and need to be unique,0,,,,1,1,,,,0,,,,,,,,,R,,,R,,Z,,,,Simple Inverter Model,,,,,R,Operato
47、r,Z Gene,Z,,R,,Cooperativity,Cooperative DNA binding is where the binding of one protein increases the likelihood of a second protein bindingCooperativity adds more non-linearity to the systemIncreases switching sensit
48、ivityImproves robustness to noise,,,,,Z Promoter& Operator,Z Gene,R Gene,,R,R,,,,,R Promoter,TranscriptionTranslation,CooperativeDNA Binding,,,RNA Polymerase,R,,Cooperative Inverter Model,,,,,R,R,,Operator,Z Gene
49、,Z,,R,,BioCircuit Computer-Aided Design,SPICE,,BioSPICE,steady state,dynamics,BioSPICE: a prototype biocircuit CAD tool simulates protein and chemical concentrations intracellular circuits, intercellular communication
50、 single cells, small cell aggregates,,Genetic Circuit Elements,,inputmRNA,ribosome,,promoter,,outputmRNA,ribosome,operator,translation,transcription,,RNAp,,RBS,,RBS,,A BioSPICE Inverter Simulation,input,output,,,,repre
51、ssor,,promoter,They work in vivo Flip-flop (Gardner & Collins, 2000)Ring oscillator (Elowitz & Leibler, 2000)However, cells are very complex environmentsCurrent modeling techniques poorly predict behavior,“Pr
52、oof of Concept” Circuits,,time (x100 sec),,,,[A],,,,,[C],[B],,B,_S,_R,,,,,,,,,,,,,,,A,_[R],[B],_[S],[A],time (x100 sec),,time (x100 sec),,,,,RS-Latch (“flip-flop”),Ring oscillator,,Cellular Logic Summary,Current syst
53、ems are limited to less than a dozen gatesThree inverter ring oscillator (Elowitz, 2000)RS latch (Gardner, 2000)Inter-cell communication (Weiss, 2001)A natural repressor-based logic technology presents serious scalab
54、ility issuesScavenging natural repressor proteins is time consumingMatching natural repressor proteins to work together is difficult,Cellular Logic Summary,Sophisticated synthetic biological systems require a scalable
55、cellular logic technology with good cooperativityZinc-finger proteins can be engineered to create many unique proteins relatively easilyZinc-finger proteins can be fused with dimerization domains to increase cooperativ
56、ityA cellular logic technology of only zinc-finger proteins should hopefully be easier to characterize,Single Zinc-Finger Structure,DNA Three BaseRecognition Region,Zinc Atom,,AlphaHelix,,TwoBetaSheets,Poly-Finger Z
57、FPs,A.C. Jamieson, J.C. Miller, and C.O. Pabo. Drug discovery with engineered zinc-finger proteins. Nature Reviews Drug Discovery, May 2003,Complex systems,Q: But if we don’t fully understand all the rules of biology,
58、how can we create anything more than basic systems?A: We can press our limits by modularizing and simplifying as much as possible.,Standardization of ComponentsPredictable performanceOff-the-shelfMechanical Engineer
59、ing (1800s) & the manufacturing revolution (e.g. Henry Ford)AbstractionInsulate relevant characteristics from overwhelming detailSimple components that can be used in combinationFrom Physics to Electrical Engine
60、ering (1900s)Decoupling Design & FabricationRules insulating design process from details of fabricationEnable parts, device, and system designers to work togetherVLSI electronics (1970s),Enabling Synthetic Biolo
61、gy,Characterization,Catalog input-output characteristics of existing and new parts/devices,Standardization,Physical connectionsFunctional connectionsPerformance,SB works via three layers of abstraction,Devices,Parts,Sy
62、stems,,,Abstraction in biology,Devices,Parts,Systems,,,Barriers,- Technological- Legal- Ethical,Synthetic Biology: Intellectual Property,Relationship of synthetic biology to intellectual property law has been largely u
63、nexplored. The relevant research space already contains broad patents on foundational technology. Synthetic biology commons? Tools of open source – property rights coupled with viral licensing,Synthetic Biology: Intell
64、ectual Property,What is patentable and/or copyrightable?Broad biological functions Specific sequences Specific uses Sources of uncertainty in synthetic biology as related to IPR definitionsWhat are effects of altern
65、ate definitions of what is patentable and copyrightable on: Development of field? Efficiency? Justice?,Synthetic Biology: Intellectual Property,Patents on fundamental ideas in synthetic biology Example: A patent on t
66、he idea of a biological part: a piece of DNA with specific function that can be combined with another part in a predefined fashion. Such a patent would be impossible to circumvent. It represents a fundamental concept th
67、at underpins synthetic biology. See Stanford patent on System and method for simulating operation of biochemical systems. United States Patent 5914891,Synthetic Biology: Intellectual Property,Patents on fundamental biol
68、ogical functions Example: A patent on a genetically-encoded inverter Such a patent would be almost impossible to circumvent because it represents a basic biological function that is of use in a range of synthetic biol
69、ogical systems. See US Dept of Health patent on Molecular computing elements, gates and flip-flops. United States Patent 6774222 See Boston University patent on Multi-state genetic oscillator. United States Patent 6737
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《水生生物學(xué)》ppt課件
- 微生物學(xué)緒論和細(xì)菌生物學(xué)性狀ppt課件
- 微生物學(xué) ppt課件
- 發(fā)育生物學(xué)課件
- 暨大普通生物學(xué)4 細(xì)胞代謝 ppt課件
- 細(xì)胞生物學(xué)課件
- 合成生物學(xué)重點室管理細(xì)則
- 合成生物學(xué)重點室申請課題
- 搭建生命積木的合成生物學(xué)
- 微生物學(xué)課件
- 細(xì)胞生物學(xué)作業(yè)ppt整理
- 荊楚理工學(xué)院《細(xì)胞生物學(xué)》ppt課件
- 17230.合成生物學(xué)的倫理研究
- 現(xiàn)代生物學(xué)動物生物學(xué)教案
- 現(xiàn)代生物學(xué)動物生物學(xué)教案
- 普通生物學(xué) 普通生物學(xué)試題集
- 生物學(xué)細(xì)胞生物學(xué)細(xì)胞連接
- 分子生物學(xué)技術(shù)課件
- 微生物學(xué)與免疫學(xué)課件
- 生物學(xué),考點
評論
0/150
提交評論