復旦大學2019年全國碩士研究生招生考試783高等數(shù)學(單)考試大綱_第1頁
已閱讀1頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、1復旦大學金融學單獨考試碩士研究生入學考試783高等數(shù)學(單)考試大綱復旦大學金融學單獨考試碩士研究生入學考試783高等數(shù)學(單)考試大綱一、微積分一、微積分(一)函數(shù)、極限、連續(xù)考試內(nèi)容函數(shù)的概念及表示法,函數(shù)的有界性、單調(diào)性、周期性和奇偶性,復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,初等函數(shù),函數(shù)關系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì),函數(shù)的左極限和右極限,無窮小量和無窮大量的概念及其關系,無窮小量的性質(zhì)及

2、無窮小量的比較,極限的四則運算極限存在的兩個準則:單調(diào)有界準則和夾逼準則,兩個重要極限:0sinlim1xxx→=1lim1exxx→∞??=????函數(shù)連續(xù)的概念,函數(shù)間斷點的類型,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)考試要求1、理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用問題的函數(shù)關系2、了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性3、理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念4、掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等

3、函數(shù)的概念5、了解數(shù)列極限和函數(shù)極限(包括左極限與右極限)的概念6、了解極限的性質(zhì)與極限存在的兩個準則,掌握極限的四則運算法則,掌握利用兩個重要極限求極限的方法7、理解無窮小量的概念和基本性質(zhì),掌握無窮小量的比較方法,了解無窮大量的概念及其與無窮小量的關系8、理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型9、了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應

4、用這些性質(zhì)(二)一元函數(shù)微分學3考試要求1、理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法與分部積分法2、了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會求它的導數(shù),掌握牛頓萊布尼茨公式以及定積分的換元積分法和分部積分法3、會利用定積分計算平面圖形的面積、旋轉(zhuǎn)體的體積和函數(shù)的平均值,會利用定積分求解簡單的經(jīng)濟應用問題4、了解反常積分的概念,會計算反常積分(四)多元函數(shù)微積

5、分學考試內(nèi)容多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì),多元函數(shù)偏導數(shù)的概念與計算,多元復合函數(shù)的求導法與隱函數(shù)求導法,二階偏導數(shù),全微分,多元函數(shù)的極值和條件極值、最大值和最小值,二重積分的概念、基本性質(zhì)和計算,無界區(qū)域上簡單的反常二重積分.考試要求1、了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義2、了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)3、了解多元函數(shù)偏導

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論