外文翻譯--直接自適應(yīng)切片在理想材料零件的cad模型(ifmc)_第1頁
已閱讀1頁,還剩30頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、<p>  中國機(jī)械工程學(xué)報(bào) v01.18,No.1,2005</p><p><b>  徐道明 </b></p><p><b>  鎮(zhèn)沅家 </b></p><p><b>  郭東明</b></p><p>  重點(diǎn)實(shí)驗(yàn)室精密和非傳統(tǒng)加工技術(shù)應(yīng)用教育部 ,大連

2、理工大學(xué) ,116024中國大連。 </p><p>  直接自適應(yīng)切片在理想材料零件的CAD模型(IFMC) </p><p>  摘要:一個(gè)全新的直接自適應(yīng)分層的方法,可明顯提高零件精度和減少建立時(shí)間。班至少有兩個(gè)階段都包含在這個(gè)操作:得到的切削平面與固體部分和確定的層厚度的交叉輪廓。除了通常的SPI算法,該固體模型切片它的特殊要求,使橫截面的輪廓線段盡可能是其中之一 </p&g

3、t;<p>  這是提高制造效率,通過自適應(yīng)地調(diào)整方向的一步,在每個(gè)交叉點(diǎn)的步驟的大小來獲得優(yōu)化的咬合高度達(dá)到。層厚度的測定可分為兩個(gè)階段:基于幾何厚度和厚度估計(jì)基于驗(yàn)證材料。前一階段的幾何公差過程分為兩個(gè)部分:各種曲線由圓弧近似,引入了第一部分,和LM過程的輪廓線之間的偏差和圓弧生成第二部分后一階段主要是驗(yàn)證估計(jì)在前一階段的層的厚度和確定一個(gè)新的必要的話。 </p><p>  關(guān)鍵詞:快速原型

4、 理想材料零件 直接自適應(yīng)切片 表面/平面交叉 行軍 </p><p><b>  0引言 </b></p><p>  理想材料零件(IFMC)是一種新型的材料組分為科學(xué)技術(shù)發(fā)展所需的類。 快速原型制造(RP&M)技術(shù),或者叫SFF(固體無模成形)技術(shù),是制造的理想材料零件的基本技術(shù)。 它是基于的原理制造層的層。與傳統(tǒng)制造工藝相比,那些使用RP&

5、;M技術(shù)目前是耗時(shí)的部分依賴,但在處理具有寬范圍的形狀零件具有柔性 </p><p>  固體部分的切片是一種理想材料零件的基本步驟在制造過程。 闡述了RP工藝原理直觀,可應(yīng)用于相關(guān)的階段, 如方向,支持生成,等。 </p><p>  目前,切片是主要處理無數(shù)的三角面片逼近的部分,那就是,STL文件。由于其固有的缺點(diǎn),這樣直接切片的部分模型更是成為一個(gè)活躍的研究都可以達(dá)到任何靈活的自適應(yīng)

6、允許割線的高度。此外,也有兩種類型的分層策略:均勻分層自適應(yīng)切片。與前者相比,后者能用較少的時(shí)間完成建設(shè)較高的表面精度。 </p><p>  P.卡尼和D. Dutta討論一個(gè)準(zhǔn)確的切片程序LM過程。 在此基礎(chǔ)上,v.kumar,等人,進(jìn)一步描述了一種更一般的切片過程中的LM非均質(zhì)模型。 W. Y.馬和P. R.他提出了一個(gè)算法,即自適應(yīng)切片孵化戰(zhàn)略選擇。 一種新的方法,稱為局部自適應(yīng)切片技術(shù)進(jìn)行了簡要的介紹了

7、賈斯廷tyberg,等。 一種自適應(yīng)分層方法在二語習(xí)得過程西方公司旗下,三富。 ET ALT,K.瑪尼,等人擴(kuò)展他們的早期作品,說裁判。 [2,3]自適應(yīng)的CAD模型切片。 </p><p>  另一個(gè)全新的直接自適應(yīng)分層策略提出了由至少兩個(gè)階段:得到的交叉輪廓和確定層的厚度。前者主要是處理得到的斷面輪廓線段盡可能根據(jù)固體部分的幾何特征,后者試圖確定切片層由輪廓在第一階段的基礎(chǔ)上獲得的幾何特性和材料設(shè)置綜合分析的

8、厚度。兩者交替進(jìn)行直至切層在預(yù)方向到達(dá)的最后部分定義的取向。 </p><p><b>  1跟蹤沿交叉曲線 </b></p><p>  一般來說,在CAD模型的表面是由平面,圓錐曲線和曲面。 切割零件的實(shí)體模型的切割平面問題,事實(shí)上,一個(gè)SPI(表面/平面交叉口)從幾何問題,這可以被視為一個(gè)特殊的情況下(SSI表面/曲面求交問題。 SSI問題的方法通常分為兩類:解

9、析法和數(shù)值方法(主要是推進(jìn)基于或細(xì)分算法)。此外,基于微分幾何原理的算法是近年來迅速發(fā)展起來的。 平面交叉口之間 和一個(gè)參數(shù)的表面可以被視為一個(gè)擴(kuò)展 和特殊情況下的交叉參數(shù)化的表面和表面之間。 </p><p>  行進(jìn)中的基礎(chǔ)算法計(jì)算一個(gè)切割平面與一個(gè)理想材料零件的CAD模型的參數(shù)曲面求交的輪廓,其中一個(gè)突出的特點(diǎn)是允許充分利用咬合高度。 </p><p>  1.1對(duì)于具有參數(shù)曲面的線

10、交叉點(diǎn)算法計(jì)算 </p><p>  讓代表一條直線,在AI上表面附近的點(diǎn)線,是本線和T為參變量的方向矢量。讓我們(U,V)表示一個(gè)曲面的參數(shù)變量u和v從某一初始點(diǎn)在直線和平面,一個(gè)迭代過程可以進(jìn)行,得到一個(gè)真正的交叉點(diǎn),以滿足表達(dá) </p><p>  擴(kuò)大這種表達(dá),我們可以得到 </p><p>  牛頓迭代法求解這組方程</p><p>

11、;<b>  假設(shè) </b></p><p><b>  可以得到以下方程 </b></p><p>  讓T = 0的函數(shù)f的變量的初始值(T),對(duì)應(yīng)點(diǎn)的AI。讓我們(U,V)被認(rèn)為是最接近的表面上的點(diǎn),即,Bz和雙值(U,V)的變量對(duì)初始值(U,V)表達(dá)的(U,V)。 </p><p>  毫無疑問,迭代過程將持續(xù)到

12、下是滿意的,其中是一個(gè)預(yù)先設(shè)定的允許誤差,和作為一個(gè)結(jié)果,真正的交叉點(diǎn)</p><p>  1.2該步驟的方向和步長的初始估計(jì) </p><p>  假定曲率點(diǎn)的Pi表面上是Ki。那里的步進(jìn)方向和步長的初步評(píng)估是根據(jù)曲率KI測定。 在這種情況下,割線的高度不能滿足要求的優(yōu)化步驟,中間值定理和線性插值的方法將聯(lián)合應(yīng)用,得到優(yōu)化的步進(jìn)方向和步長。方向的一步,對(duì)于點(diǎn)Pt下點(diǎn)9月的大?。ㄒ妶D。1)

13、是由方程4決定</p><p>  其中一個(gè)是切向量之間的夾角,在點(diǎn)PI和步進(jìn)方向向量,即,估計(jì)步長方向;我是估計(jì)的步長;R對(duì)應(yīng)估計(jì)曲率KI圓半徑;H是預(yù)先設(shè)定的容許咬合高度。 </p><p>  圖1 選擇下一步 </p><p>  1.3 優(yōu)化的步驟 </p><p>  實(shí)際的交叉點(diǎn)的部分的表面的步驟是在1.1節(jié)中介紹的算法來計(jì)算

14、的。然而,這并不意味著得到滿足預(yù)先設(shè)定的要求和咬合高度進(jìn)行優(yōu)化。優(yōu)化的步驟的標(biāo)準(zhǔn)可以是多種多樣的。在本文中,我們將有咬合高度0.9 [ H ]<H≤[H ],其中[ H ]為許用割線高度設(shè)定值。 </p><p>  讓H1是計(jì)算正割高度有一定夾角的A1對(duì)應(yīng),這是小于[ H ],而Hg大于[H]對(duì)應(yīng)的夾角銀。我們可以構(gòu)建一個(gè)變小時(shí),即功能,α= F(H)。擴(kuò)大,我們 </p><p>  

15、根據(jù)表面的連續(xù)性假設(shè)和中值定理,我們可以通過線性插值的方法獲得估計(jì)的α如 </p><p>  步長可以計(jì)算由方程(4)與這個(gè)周期將被重復(fù)直到咬合高度滿足優(yōu)化咬合高度要求。</p><p>  2 階梯效應(yīng)和遏制的問題 </p><p>  兩個(gè)主要因素影響幾何計(jì)算的基礎(chǔ)層的厚度和表面加工精度是階梯效應(yīng)和遏制的問題。換句話說,基于幾何層厚度的允

16、許的牙尖高度主要取決與切片平面在一定高度的原始CAD模型的表面形狀。 </p><p>  階梯效應(yīng)是由LM過程的特點(diǎn)而形成的。它是由物理參數(shù)表示:牙尖高度,如圖2所示。 </p><p>  圖2 階梯效應(yīng)和遏制風(fēng)格 </p><p>  安全問題是指包含關(guān)系的部分原始CAD模型的輪廓和沉積在LM過程后的實(shí)際,這是通過平面的輪廓的討論,在算法中沉積的策略表

17、示,如圖2所示。 </p><p>  讓Sc的部分原始CAD模型的二維輪廓;S1是逼近折線Sc的LM的形成過程。</p><p>  它可以從圖的情況下看到(一)正公差和案例(B)是負(fù)公差而案例(c)和(d)混合公差。 </p><p>  3 基于幾何層厚度估計(jì) </p><p>  對(duì)某些層的層厚度的確定算法的粗糙的流程圖如圖所示,最

18、大層的厚度是由特定的LM工藝和設(shè)備的確定。 </p><p>  圖3 層厚度的確定算法流程圖 </p><p>  幾何基礎(chǔ)層厚度計(jì)算在任何點(diǎn)上的輪廓線的切片平面是馬的最低層的厚度對(duì)切片輪廓各點(diǎn)的基礎(chǔ)上。 </p><p>  通常,一個(gè)逃離曲線由圓弧和直線近似可以被視為一個(gè)圓的曲率為零。因此我們可以集中我們的討論在圓弧誤差分析對(duì)切片平

19、面的層位于同一縱截面的兩個(gè)點(diǎn)作為一個(gè)自由曲線或圓弧的終點(diǎn)。 </p><p><b>  3.1 誤差準(zhǔn)則 </b></p><p>  在某點(diǎn)的誤差準(zhǔn)則被定義為偏離所建立的輪廓線的層在LM從正常的曲線在某點(diǎn)上下分層平面。一般說來,誤差值是通過允許尖高度代表。 </p><p>  偏差的一個(gè)綜合性的概念,一般可以分為兩個(gè)部分:(1)的圓弧曲線

20、或直線,逼近誤差說。從該層的輪廓線,圓弧的錯(cuò)誤,說。從而,允許的牙尖高度,說,由用戶,可以全面的價(jià)值。它們之間的關(guān)系如下圖所示 </p><p><b>  3.2 誤差分析 </b></p><p>  3.2.1逼近誤差 </p><p>  原來的曲線和逼近圓弧之間的誤差是由 ,作為顯示在圖4A。假設(shè)在兩個(gè)端點(diǎn)曲率,Q1和Q2,正常曲線K

21、1和K2。因此,對(duì)圓弧C1曲率估計(jì)的定義是 </p><p>  從中心點(diǎn)曲線C2端點(diǎn)之間,說第三季度,沿垂直方向的線段q1q2,高度誤差之間的正常曲線C2和C1有圓弧割線H2和 = | H2 |。在特殊情況下,例如,正常曲線C2降低到一條直線,圓弧的曲率為零的C1和 =0。 </p><p><b>  3.2.2 偏差 </b></p><

22、p>  錯(cuò)誤的定義是F層的輪廓線的偏差距離逼近圓弧,這是相對(duì)于G有兩種情況計(jì)算誤差F復(fù)雜一點(diǎn):一是圓弧的謊言在一季度的圓,如圖4b;另一個(gè)是圓弧跨越一個(gè)四分之一圓,位于半圈, 在圖4c和4d顯示。它們將分別在下面討論。</p><p>  簽署了包括交叉曲線與取向方向兩端點(diǎn)的切矢角可以得到,如A3的角度圖4c。簽署產(chǎn)品積極結(jié)果是相應(yīng)的案例(B)而相反的是相應(yīng)的案例(C)和(D) </p>&

23、lt;p>  在一個(gè)單一的象限圓弧 </p><p>  圓弧半徑圖?;谄矫鎺缀?,我們有 </p><p><b>  這</b></p><p><b>  (2)圓弧過象限 </b></p><p>  在圖4c,圓弧是在用過量的沉積策略的凸函數(shù)。 </p><p&g

24、t;  假設(shè)在A3點(diǎn)四比一點(diǎn)第四季度,我們。 </p><p>  在圖4d,圓弧是缺乏沉積策略的凸函數(shù)。 </p><p>  (a)圓弧逼近自由曲線 (b)在一個(gè)單一的象限圓弧過度沉積 </p><p> ?。╟)在圓弧過象限過量沉積 (d)對(duì)電弧在一個(gè)象限缺乏沉積 </p><p>  圖4 逼近誤差和偏差</p>

25、<p>  假設(shè)在A3點(diǎn)Q4大于一點(diǎn)Q3, 我們有。</p><p>  在這種情況下,電弧是在一個(gè)缺乏或過量沉積策略具有相同的處理方法如上所述的情況下圖.4c或圖.4d分別凹函數(shù)。 </p><p>  3.3 錯(cuò)誤和層厚度 </p><p>  如果當(dāng)前層厚度不能滿足牙尖高度的要求,降低層的厚度進(jìn)行估計(jì)的一種新的周期。在本文中。當(dāng)前層厚度的DG除以

26、n = 100和價(jià)值的DG / N作為層厚度遞減。 </p><p>  在某一層的厚度估計(jì)將被視為在該層的厚度估計(jì)過程的下一點(diǎn)的當(dāng)前層厚度的初始值。 </p><p>  4 基于材料層厚度的檢驗(yàn) </p><p>  目的驗(yàn)證的材料是檢查是否當(dāng)前層厚度符合要求,材料制造,如果當(dāng)前沒有獲得一個(gè)新的層厚度值。具體而言,一個(gè)隨機(jī)選擇的空間點(diǎn)上的可用區(qū)域低的切片平面某一

27、種物質(zhì)的區(qū)域是用來驗(yàn)證當(dāng)前層的厚度,而這個(gè)過程的初始值是由材料的區(qū)域的幾何形狀確定如第3節(jié)所提到的材料屬性;如果當(dāng)前層厚度不符合材料的要求,該層的厚度逐漸減小直至滿足要求;得到的層的厚度在這一點(diǎn)上,然后作為下一次驗(yàn)證過程的初始值;這個(gè)周期將持續(xù)到一個(gè)預(yù)先設(shè)定的總數(shù)N點(diǎn)進(jìn)行了驗(yàn)證。 </p><p>  在本文中,驗(yàn)證過程主要集中在功能梯度材料(功能梯度材料)。 </p><p><b

28、>  4.1材料的檢查 </b></p><p>  要在取向方向接近的材料的體積百分比曲線圓弧的方法不同于使用第3節(jié)中的方法。在材料區(qū)域的某些材料的體積百分比可以被視為在取向方向的高度的函數(shù)。Z軸的簡化,即,P1 = F(Z1)。 </p><p>  把材料的第一優(yōu)先為例。從某一點(diǎn)上下分層Q1的平面層高度Z1,延長距離當(dāng)前層的厚度,我們在高度22一點(diǎn)Q2。材料的體積百

29、分比P1,</p><p>  P2和P3點(diǎn)Q1,Q2和Q3的中間點(diǎn),分別說在高度23。</p><p>  結(jié)合三體積百分比,P1,P2和P3,我們可以從點(diǎn)七的距離與當(dāng)前層厚度沿導(dǎo)向軸構(gòu)造一個(gè)近似圓弧的體積百分比曲線,如圖5所示。 </p><p> ?。╝)圓弧是單調(diào)的 (b)圓弧是非單調(diào)</p><p>  圖5 逼近圓弧曲線的材

30、料 </p><p>  讓圓弧的中心是(Zo,PO)。如果(Z1-Zo)x(Z2 Zo)≥0,圓弧的定義為5A條相應(yīng)的單調(diào)而相反的是定義為非單調(diào)對(duì)應(yīng)圖5b。每種情況都有不同的解決方式。 </p><p>  4.2 誤差的分析 </p><p>  一個(gè)必要但不充分的條件下,本文提出驗(yàn)證當(dāng)前層厚度。三個(gè)主要因素,材料變異性的界限,材料分辨率在逼近圓弧的端點(diǎn)的材料的

31、體積百分比,主要考慮。 </p><p>  在圖5,代表材料的體積百分比,LM設(shè)備可以存放在實(shí)踐中較低的切平面的層達(dá)到一定高度取向軸。在圖5A的情況下,下面的關(guān)系需要進(jìn)行測試,驗(yàn)證層厚度 </p><p>  代表這個(gè)LM機(jī)材料分辨率。 </p><p>  這個(gè)方程的一個(gè)充要條件。實(shí)際上,它可以簡化驗(yàn)證層厚度。從式(10),我們有 </p><

32、;p>  如圖5b,這些變量測試的關(guān)系 </p><p><b>  或者</b></p><p>  在P4是圓弧的材料百分比極值。</p><p><b>  同樣,我們有</b></p><p>  由式表示的條件。(11)和(13)是必要但不充分的條件下,可方便地應(yīng)用于驗(yàn)證層的厚度。在

33、這兩個(gè)方程,考慮三個(gè)主要因素。 </p><p>  不滿足這些條件,該層的厚度必須逐漸減少執(zhí)行另一個(gè)周期的驗(yàn)證。</p><p><b>  5 例 </b></p><p>  如圖所示,有一個(gè)自由曲面主要由兩個(gè)裁剪曲面的NURBS表示ISO 10303協(xié)議如下。在正常的方向?yàn)閅軸相對(duì)的斜面(不繪制在圖6)作為一個(gè)切割平面相交的表面。 &l

34、t;/p><p>  圖6 自由曲面在笛卡爾坐標(biāo)系統(tǒng) </p><p>  有兩種主要的誤差與切削過程一致的表面上的點(diǎn)對(duì)點(diǎn)線距誤差和誤差咬合高度相關(guān)的線段相交的曲線逼近。這兩個(gè)錯(cuò)誤分別是l0-4毫米和10-1毫米。 </p><p>  三種不同的算法結(jié)果的比較見表l上市,其中算法的L是指分半步長折半查找法,算法2表示二進(jìn)制搜索法和分半步的方向;3代表算法自適應(yīng)方法,

35、根據(jù)中值定理和線性插值相結(jié)合的方法旋轉(zhuǎn)角的變化。</p><p>  從表1,它是已知的兩個(gè)算法,算法2我很難獲得更好的結(jié)果。3使用線性插值算法具有更好的綜合效果比算法1和2。 </p><p>  材料的設(shè)置屬性附加到了這部分內(nèi)容如下。</p><p>  最低層厚度:0.01mm</p><p>  最大層厚度:0。1毫米</p&

36、gt;<p>  材料認(rèn)證面積密度:0。l/mm2</p><p>  材料沉積策略:多余的材料類型:FGM</p><p>  外表面的公差:0.02毫米</p><p>  內(nèi)部表面的公差:0.05毫米</p><p><b>  材料下公差:0毫米</b></p><p>  

37、材料上公差:0.1mm</p><p><b>  材料分辨率:0.1</b></p><p>  為第一優(yōu)先的成分的材料分布函數(shù)</p><p>  其中R是遠(yuǎn)處的一個(gè)空間點(diǎn)遠(yuǎn)離方向軸,Z是該點(diǎn)坐標(biāo)分量;符號(hào)“ABS”意味著“絕對(duì)值”。零件的CAD模型的起源和材料性能的起源是一致的和定向的矢量是(0,1,0)在這個(gè)例子。 </p>

38、<p>  一部分連續(xù)的層厚度從z = 15是在表2中列出的向上的我(我= 1,2,..”10),是第i層;DG代表的幾何特征估計(jì)層厚度;DM代表材料為基礎(chǔ)的驗(yàn)證如上所述在層的厚度,這是第i層的最后一層厚度。</p><p>  從表2可以看出,通過自適應(yīng)分層產(chǎn)生的層的厚度可以在一個(gè)相對(duì)較大的范圍根據(jù)綜合因素包括曲面的幾何特征和零件的材料屬性,這無疑可以與均勻切片技術(shù)相比減少建造時(shí)間。 </p

39、><p><b>  6 結(jié)論</b></p><p>  所描述的工作重點(diǎn)是分層制造過程的理想材料零件。直接切片方法直接切片的部分原始CAD模型,通常保持足夠的幾何信息,優(yōu)于STL文件,因此,導(dǎo)致改進(jìn)的精度。SPI本文提出的算法具有一個(gè)突出的特點(diǎn)是充分利用允許的咬合高度。自適應(yīng)切片也可以改善切削精度和減少建筑時(shí)間比較均勻的切片。幾何信息是用于預(yù)測層的厚度和材料的信息是用

40、來驗(yàn)證層的厚度和確定一個(gè)新的必要的話。 </p><p>  CHINESE JOURNAL OF MECHANICAL ENGINEERING </p><p>  v01.18,No.1,2005 </p><p>  XU Daoming</p><p>  Jia Zhenyuan</p><p>  Guo

41、 Dongming</p><p>  Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024.China </p><p>  DIRECT AND ADAP

42、TIVE SLICING ON CAD MODEL OF IDEAL FUNCTIONAL MATERIAL COMPONENTS(IFMC)</p><p>  Abstract:A brand new direct and adaptive slicing approach is proposed.which can apparently improve the part accuracy and reduc

43、e the building time.At 1east two stages are included in this operation:getting the crossing contour of the cutting plane with the solid part and determining the layer thickness.Apart from usual SPI algorithm,slicing of t

44、he solid mode1 has its special requirements Enabling the contour 1ine segments of the cross—section as long as possible is one of them.which is for improv</p><p>  Key words:Rapid prototyping Ideal function

45、al material components Direct and adaptive slicing Surface/plane intersection Marching</p><p>  0 INTRODUCTION</p><p>  Ideal functional material components(IFMC)is a novel class of materia

46、l component required for the development of science and technology .Rapid prototyping and manufacturing(RP&M) technology,or called SFF(solid freeform fabrication) technology,is a fundamental technology for manufactur

47、ing of IFMC.which is based on the principle of manufacturing layer by layer.Compared with traditional manufacturing processes,those of applying RP&M technology currently are time-consuming with part dependence,but f&

48、lt;/p><p>  Slicing of the solid part is one of the elementary steps ln the process of manufacturing IFMC.which illustrates the principle of RP process </p><p>  Intuitively and can be applied to r

49、elevant stages,such as orientation,</p><p>  support generation,etc.</p><p>  At present,slicing is mainly processed on a myriad of triangular facets approximating the part,that is,STL file.Owin

50、g to its intrinsic disadvantages,the way of directly slicing on the part model is becoming a more active research topic.which can reach any flexibly adaptive allowable secant height.Moreover,there are also two types of s

51、licing strategy:the uniform slicing and the adaptive slicing.Compared with the former,the latter can accomplish a higher surface accuracy with less building time.</p><p>  P. Kulkarni and D.Dutta discussed a

52、n accurate slicing procedure for LM process.Based on it,V.Kumar,et al ,further described a more general slicing procedure in LM for heterogeneous models.W. Y. Ma and P. R.He introduced a developed algorithm,namely an ad

53、aptive slicing and selective hatching strategy .A brand new approach,termed as the local adaptive slicing technique is briefly introduced by Justin Tyberg,et al .An adaptive slicing method is adopted in SLA process by A.

54、P. West,S.P. Sambu.et alt</p><p>  Another brand new direct and adaptive slicing strategy proposed in this paper consists of at least two stages:getting the crossing contour and determining the layer thickne

55、ss.The former is mainly processed to get the contour line segments of the cross.section as long as possible according to geometry features of the solid part while the latter intends to determine the thickness of the slic

56、ing layer built from the contour obtained in the first stage based on the comprehensive analysis of both geo</p><p>  1 TRACING ALONG THE CROSSING CURVE</p><p>  Generally,the surface in CA

57、D model is expressed by plane,conic and parametric surface.The problem of slicing the solid model of the part by cutting plane is,in fact,a SPI(surface/plane intersection)problem from viewpoint of geometry, which can be

58、regarded as a special case of SSI(surface/surface intersection problem.Approach to SSI problem is usually classified into two categories:the analytic method and the numerical method (mainly marching-based or subdivision

59、-based algorithms) . Moreover, al</p><p>  A marching-based algorithm is employed in this paper to compute intersection contours of a cutting plane with a parametric surface of the CAD model of IFMC,a distin

60、guished characteristic of which is the utilization of allowable secant height to full extent.</p><p>  1.1 Algorithm for computing crossing point of a line with a parametric surface</p><p>  Le

61、t represent a straight line,where ai is a point on the line near a surface,is the direction vector of this line and t stands for parametric variable.Let S(u,V)denote a surface with parametric variables u and V.From cert

62、ain initial points at both the straight line and the surface,an iteration process can be conducted to get a true crossing point,which satisfies expression </p><p>  Expanding this expression,we can obtain<

63、;/p><p>  The Newton-Raphson method is applied to solve this system of equations</p><p>  Assuming that</p><p>  Following equations may be obtained </p><p>  Let t= 0 be

64、 the initial value of variable t for function f(t) ,corresponding to point ai.Let S(u ,v )be the point that is closest to a on surface S ,that is,point bz and the dual value(u ,v ) are the initial values of variable p

65、air(u,v)for expression S(u,v).</p><p>  It is no doubt that the iteration process will be continued until condition is satisfied,where is a preset allowable error, and as a result, the true crossing point &

66、lt;/p><p>  1.2 Initial estimation of the step direction and the step size</p><p>  Assume that the curvature at point Pi on the surface is Ki. There by the initial evaluation of the step directio

67、n and the step size are determined according to curvature Ki. in the case that the secant height can not meet the requirement of optimized step , the intermediate value theorem and the linear interpolation method will be

68、 jointly applied to get the optimized step direction and step size . The step direction and the sept size for the next point of point Pt (see Fig .1) is decided by Eq .</p><p>  where a is the separation ang

69、le between the tangent vector Vt at point pi and the step direction vector that is , estimated step direction;l is the estimated step size; r is the circle radius corresponding to estimated curvature ki ; h is pre-set al

70、lowable secant height . </p><p>  1.3 Optimized step</p><p>  The practical crossing point of the step line with the surface of the part is computed by the algorithm introduced in section 1.1.Ho

71、wever,it does not mean that the resulting secant height can satisfy pre-set requirement and it is optimized.The criterion for optimized step can be various.In this paper,we set the secant height have to be 0.9[h]<h≤[h

72、],where[h] stands for the pre-set value of the allowable secant height.</p><p>  Let h1 be a calculated secant height corresponding with certain included angle a1,which is less than[h],while hg is greater th

73、an [h] corresponding with included angle ag.We can construct a function of variable h,that is, α=f(h).Expanding it,we have</p><p>  According to surface continuity assumption and the intermediate value theor

74、em,we can obtain an estimated α by linear interpolation method as follows</p><p>  The step size can be calculated by Eq.(4) with.This cycle will be repeated until the secant height satisfies optimized secan

75、t height requirement.</p><p>  2 STAIRCASE EFFECT AND CONTAINMENT PROBLEM</p><p>  Two main factors that affect the calculation of geometry-based layer thickness and surface finish accuracy

76、are the staircase effect and the containment problem.In other words,the geometry-based layer thickness is mainly determined by the allowable cusp height and the surface shape of the original CAD model over the slicing pl

77、ane at certain height.</p><p>  (1) Staircase effect is formed by the characteristic of LM process.It is represented by physic parameter:the cusp height as shown in Fig.2.</p><p>  Containment

78、problem refers to the containing relationship of the contour of the original CAD model of the part and the actual one after depositing in LM process,which is discussed through planar profile and is denoted by deposition

79、strategy in this algorithm,as shown in Fig.2.</p><p>  Let Sc be the 2D profile of the original CAD model of the part;S1 be the approximating fold lines of Sc formed by the LM process.</p><p>

80、  It can be seen from Fig.2 that case (a) is positive tolerance and case (b) is negative tolerance while case (c) and (d) are mixed tolerance.</p><p>  3 GEOMETRY-BASED LAYER THICKNESS ESTIMATION</p>

81、<p>  The rough flowchart of layer thickness determination algorithm for certain layer is illustrated in Fig.3 and the maximum layer thickness is determined by specific LM process and equipment.</p><p>

82、;  Geometry-abased layer thickness calculation at any point on the contour line in the slicing plane is the basis for geeing the minimum layer thickness among all points on the slicing contour.</p><p>  Usua

83、lly,a flee curve can be approximated by a circular arc and a straight line can be regarded as a circle with zero curvature.Therefore we can focus our discussion on error analysis of the circular arc.Two points on both sl

84、icing planes of the layer lying in the same longitudinal section are taken as the endpoints of a free curve or a circular arc.</p><p>  3. 1 Error criterion</p><p>  The error criterion at cert

85、ain point is defined as deviation of the built up contour line of the layer in LM from the normal curve at certain point on lower slicing plane.In general.the error value is represented by allowable cusp height.</p>

86、;<p>  The deviation error is a comprehensive concept which can generally be divided into two parts:(1)The error of the circular arc approximating a curve or a straight line,say . The error of the circular arc fr

87、om the contour line of the layer,say .Thereby,the allowable cusp height,say ,set by the user,can be a comprehensive value of them.The relationship between them is shown as below</p><p>  3.2 Error analysis&l

88、t;/p><p>  3.2.1 Approximating error </p><p>  The error between the original curve and the approximating circular arc is represented by , as shown in Fig.4a. Assume that the curvatures at both en

89、dpoints, q1 and q2, of normal curve are k1 and k2. Therefore, an estimate of curvature of the circular arc c1 is defined as.</p><p>  From a middle point between endpoints of curve C2, say q3, along the dire

90、ction perpendicular to line segment q1q2, the height error between normal curve C2 and circular arc c1 has secant h2 and =|h2| . In special cases, for example, the normal curve C2 degrades to a straight line l, the curva

91、ture of circular arc c1 is zero and =0.</p><p>  3.2.2 Deviation error </p><p>  The definition of error is the deviation error of the contour line of the layer away from the approximating ci

92、rcular arc, which is a little complex compared with There are two cases for calculating error : one is that the circular arc lies within a quarter of circle, as shown in Fig.4b; another is that the circular arc spans o

93、ver a quarter of circle and lies within one-half circle, as shown in Figs.4c and 4d. They are to be discussed in the following, respectively</p><p>  The signed included angle of tangent vectors at both end-

94、points of crossing curve with the orientation direction can be obtained, such as a3 in Fig.4c. The positive consequence of the product of both signed angles is corresponding with case (b) while the opposite is correspond

95、ing with case (c) and case (d)</p><p>  Circular arc in one single quadrant</p><p>  The radius of arc is in Fig.4b. Based on plane geometry, we have </p><p><b&

96、gt;  Where </b></p><p>  (2) Circular arc over one quadrant</p><p>  In Fig.4c, circular arc is in a convex function with excess deposition strategy.</p><p>  Assuming a3 at p

97、oint q4 is greater than the one at point q4, we have . </p><p>  In Fig.4d, circular arc is in a convex function with deficient deposition strategy.</p><p>  Assuming a3 at point q4 is greate

98、r than the one at point q3, we have .</p><p>  In the case that arc is in a concave function with deficient or excess deposition strategy has the same tackling method as mentioned above to case of Fig.4c

99、 or Fig.4d. Respectively.</p><p>  3.3 Error and layer thickness</p><p>  If the current layer thickness can not meet the cusp height requirement, a reduced layer thickness is used to perform

100、a new cycle of estimation. In this paper. the current layer thickness dg is divided by N=l00 and the value dg /N is taken as decrement of the layer thickness.</p><p>  The estimate of the layer thickness at

101、certain point will be taken as an initial value of the current layer thickness at next point in the process of estimate of the layer thickness.</p><p>  4 MATERIAL-BASED LAYER THICKNESS VERIFYING</p>

102、<p>  The purpose of material verifying is to check if the current layer thickness can meet material manufacturing requirement, and to obtain a new value of the layer thickness if the current one failed. Specifica

103、lly, the material attribute of a randomly selected space point on the available region of lower slicing plane of a certain material region is used to verify the current layer thickness while the initial value of this pro

104、cess is determined by geometry shape of the material region as mentioned </p><p>  In this paper, the verifying process is mainly focused on FGM (functionally gradient material).</p><p>  4.1

105、Material check</p><p>  The way to get approximating circular arc of the material volume percentage curve in the direction of orientation differs from the way used in section 3. The volume percentage of cert

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論