版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 畢業(yè)設計(論文)外文文獻翻譯</p><p><b> SHIELDS</b></p><p> 【Abstract】A tunnel shield is a structural system, used during the face excavation process. The paper mainly discusses the f
2、orm and the structure of the shield. Propulsion for the shield is provided by a series of hydraulic jacks installed in the tail of the shield and the shield is widespread used in the underground environment where can not
3、 be in long time stable. The main enemy of the shield is ground pressure. Non-uniform ground pressure caused by the steering may act on the skin tends to for</p><p> 【Keywords】shield hydraulic jacks groun
4、d pressure steering working decks</p><p> A tunnel shield is a structural system, normally constructed of steel, used during the face excavation process. The shield has an outside configuration which matc
5、hes the tunnel. The shield provides protection for the men and equipment and also furnished initial ground support until structural supports can be installed within the tail section of the shield. The shield also provide
6、s a reaction base for the breast-board system used to control face movement. The shield may have either an open or clo</p><p> Shield length generally varies from1/2 to 3/4 of the tunnel diameter. The front
7、 of the shield is generally hooded to so that the top of the shield protrudes forward further than the invert portion which provides additional protection for the men working at the face and also ease pressure on the bre
8、ast-boards. The steel skin of the shield may vary from 1.3 to 10 cm in thickness, depending on the expected ground pressures. The type of steel used in the shield is the subject of many arguments withi</p><p&g
9、t; Propulsion for the shield is provided by a series of hydraulic jacks installed in the tail of the shield that thrust against the last steel set that has been installed. The total required thrust will vary with skin a
10、rea and ground pressure. Several shields have been constructed with total thrust capabilities in excess of 10000 tons. Hydraulic systems are usually self-contained, air-motor powered, and mounted on the shield. Working p
11、ressures in the hydraulic system may range from 20-70 Mpa. To re</p><p> An Englishman, Marc Brunel, is credited with inventing the shield. Brunel supposedly got his idea by studying the action of the Tered
12、o navalis, a highly destructive woodworm, when he was working at the Chatham dock yard. In 1818 Brunel obtained an English patent for his rectangular shield which was subsequently uses to construct the first tunnel under
13、 the River Thames in London. In 1869 the first circular shield was devised by Barlow and Great Head in London and is referred to as the Great Head-</p><p> Here are some tunnels which were built by shield p
14、rinciple.</p><p> Soft-ground tunneling Some tunnels are driven wholly or mostly through soft material. In very soft ground, little or no blasting is necessary because the material is easily excavated.<
15、/p><p> At first, forepoling was the only method for building tunnels through very soft ground. Forepoles are heavy planks about 1.5 m long and sharpened to a point. They were inserted over the top horizontal
16、bar of the bracing at the face of the tunnel. The forepoles were driven into the ground of the face with an outward inclination. After all the roof poles were driven for about half of their length, a timber was laid acro
17、ss their exposed ends to counter any strain on the outer ends. The forepoles th</p><p> The use of compressed air simplified working in soft ground. An airlock was built, though which men and equipment pass
18、ed, and sufficient air pressure was maintained at the tunnel face to hold the ground firm during excavation until timbering or other support was erected.</p><p> Another development was the use of hydraulic
19、ally powered shields behind which cast-iron or steel plates were placed on the circumference of the tunnels. These plates provided sufficient support for the tunnel while the work proceeded, as well as full working space
20、 for men in the tunnel.</p><p> Under water tunneling The most difficult tunneling is that undertaken at considerable depths below a river or other body of water. In such cases, water seeps through porous
21、material or crevices, subjecting the work in progress to the pressure of the water above the tunneling path. When the tunnel is driven through stiff clay, the flow of water may be small enough to be removed by pumping. I
22、n more porous ground, compressed air must be used to exclude water. The amount of air pressure that is nee</p><p> A circular shield has proved to be most efficient in resisting the pressure of soft ground,
23、 so most shield-driven tunnels are circular. The shield once consisted of steel plates and angle supports, with a heavily braced diaphragm across its face. The diaphragm had a number of openings with doors so that worker
24、s could excavate material in front of the shield. In a further development, the shield was shoved forward into the silty material of a riverbed, thereby squeezing displaced material through</p><p> The pres
25、sure against the forward motion of a shield may exceed 48.8 Mpa. Hydraulic jacks are used to overcome this pressure and advance the shield, producing a pressure of about 245 Mpa on the outside surface of the shield.</
26、p><p> Shields can be steered by varying the thrust of the jacks from left side to right side or from top to bottom, thus varying the tunnel direction left or right or up or down. The jacks shove against the t
27、unnel lining for each forward shove. The cycle of operation is forward shove, line, muck, and then another forward shove. The shield used about 1955 on the third tube of the Lincoln Tunnel in New York City was 5.5 m long
28、 and 9.6 m in diameter. It was moved about 81.2 cm per shove, permitting the f</p><p> Cast-iron segments commonly are used in working behind such a shield. They are erected and bolted together in a short t
29、ime to provide strength and water tightness. In the third tube of the Lincoln Tunnel each segment is 2 m long, 81.2 cm wide, and 35.5 cm thick, and weighs about 1.5 tons. These sections form a ring of 14 segments that ar
30、e linked together by bolts. The bolts were tightened by hand and then by machine. Immediately after they were in place, the sections were sealed at the joints to</p><p> Shields are most commonly used in gr
31、ound condition where adequate stand-up time does not exist. The advantage of the shield in this type of ground, in addition to the protection afforded men and equipment , is the time available to install steel ribs, line
32、r plates, or precast concrete segments under the tail segment of the shield before ground pressure and movement become adverse factors.</p><p> One of the principle problems associated with shield use is st
33、eering. Non-uniform ground pressure acting on the skin tends to force the shield off line and grade. This problem is particularly acute with closed bottom shield that do not ride on rails or skid tracks. Steering is acco
34、mplished by varying the hydraulic pressure in individual thrust jacks. If the shied is trying to dive, additional pressure on the invert jacks will resist this tendency. It is not unusual to find shield wandering sever&l
35、t;/p><p> One theoretical disadvantage of the shield is the annular space left between the support system and the ground surface. When the support system is installed within the tail section of the shield, the
36、 individual support members are separated from the ground surface by the thickness of the tail skin. When steel ribs are used, the annular space is filled with timber blocking as the forward motion of the shield exposes
37、the individual ribs. A continuous support system presents a different problem. In</p><p> The main enemy of the shield is ground pressure. As ground pressure begins to build, two things happen, more thrust
38、is required for shield propulsion and stress increases in the structural members of the shield. Shields are designed and function under a preselected ground pressure. Designers will select this pressure as a percentage o
39、f the maximum ground pressure contemplated by the permanent tunnel design. In some cases, unfortunately, the shield just gets built without specific consideration o</p><p> Because ground pressure tends to
40、increase with time, the cardinal rule of operation is “keeping moving”. This accounts for the fracture activity when a shield has suffered a temporary mechanical failure. As ground pressure continues to build on the nonm
41、oving shield , the load finally exceeds its structural limit and bucking begins. An example of shield destruction occurred in California in 1968 when two shields being used to drive the CarlyV.Porter Tunnel were caught b
42、y excessive ground pressure</p><p> To offset the ground pressure effect, a standard provision in design is a cutting edge radius several inches greater than the main body radius. This allows a certain degr
43、ee of ground movement before pressure can come to bear on the shield skin. Another approach, considered in theory but not yet put into practice, is the “watermelon seed” design. The theory calls for a continuous taper in
44、 the shield configuration; maximum radius at the cutting edge and the minimum radius at the trailing edge of t</p><p> Working decks, spaced 2.4 to 3.0 m vertically, are provided inside the shield. These wo
45、rking decks enable the miners to excavate the face, drill and load holes, if necessary, and adjust the breast-board system. The hydraulic jacks for the breast-board are mounted on the underside of the work decks. Blast d
46、oors are sometimes installed as an integral part of the work decks if a substantial amount of blasting is expected.</p><p> Some form of mechanical equipment is provided on the rear end of the working decks
47、 to assist the miners in handing and placing the element of the support system. In large tunnels, these individual support elements can weigh several tons and mechanical assistance becomes essential. Sufficient vertical
48、clearance must be provided between the invert and the first working deck to permit access to the face by the loading equipment.</p><p><b> 盾 構</b></p><p> 【摘要】隧道盾構是一結構系統(tǒng),通常用于洞室開挖。本
49、文主要論述了盾構的形式和構造,通過安裝在盾構尾部的液壓千斤頂來實現(xiàn)盾構的推動,并普遍使用于不能長時間自穩(wěn)的地下環(huán)境中。地壓是盾構的主要問題,駕駛導致的不均一地壓會作用在外殼上使有離開軌道和坡道的趨勢。在盾構內的工作臺,可用于工人開挖工作面、鉆探和裝藥。</p><p> 【關鍵詞】盾構 液壓千斤頂 地壓 駕駛 工作臺</p><p> 隧道盾構是一結構系統(tǒng),通常為鋼結構并用于
50、洞室開挖。盾構的外形與隧道的形狀相匹配。盾構可為施工人員和設備提供保護,同時也可提供初始洞室表面支護,這樣一直到后部結構支護被安裝為止。同時盾構也可以用于控制工作面前移的洞室擋板系統(tǒng),提供反力基座。盾構的底板有敞開式和封閉式。封閉式底板盾構,他的結構和外殼可與洞表面360度接觸,而盾構的重量置于盾構外殼仰拱上。敞開式盾構沒有底板,需要一些輔助設備支撐其重量,地壓的合重壓在外殼上。一般在盾構前移開挖時,兩側滑移前進。道軌或滑軌的安裝不要超
51、過兩邊的劃移線為盾構提供承載支撐。</p><p> 盾構長一般是隧道直徑的1∕2~3∕4。在盾構的前部加一個蓋,以使盾構的頂部向前伸展比仰拱部分大。這樣為在工作處工作的人員提供了保護,同時也減輕了洞室擋板的壓力。盾構的鋼殼在厚度上的變化范圍為1.3~10cm,它與預估的地壓有關。在盾構中所采用的鋼的型號在隧洞行業(yè)中是一個有爭議的課題。一些人認為用A36型軟鋼,因為在地下環(huán)境中精確的工作有困難,而這樣的鋼延性好
52、,易焊接。另外一些人認為用高強度的T-1型鋼,因為強度重量比較好。盾構重5~500t,最重的盾構在前蘇聯(lián)見到過,因為它們在結構和外殼采用了鑄鐵。</p><p> 盾構的推動由在盾構尾部安裝的多個液壓千斤頂來實現(xiàn),已安裝的最后面的鋼座對著推力??偼屏投軜嬐鈿さ拿娣e、地壓有關。幾個已組裝的盾構總推力超過10000t。在盾構上,液壓系統(tǒng)有自控式、空氣發(fā)動機式和承載式。在液壓系統(tǒng)中工作壓力范圍為20~70Mpa。為
53、了得到盾構千斤頂推力的反力,水平結構拉桿(環(huán)型支柱)在相對每一個千斤頂位置和鋼座凸緣之間必須組裝。另外,一些結構性裝備也是需要的,以便把推力傳給洞壁。沒有這樣的設備,推力會通過環(huán)型支柱擴展達到門架。</p><p> 英國人Marc Brunel被認為是盾構的發(fā)明人。據(jù)推測當Brunel在Chatham船場工作時,他在研究海軍船舶蛆(一種搞破壞性蛀蟲)細節(jié)時取得盾構的思想。在1818年Brunel取得了他的矩形
54、盾構英國專利,其后在倫敦泰晤士河下面利用該盾構建成了第一條隧洞。1869年在倫敦由Barlow和Great Head設計了第一個圓形盾構,歸屬于大頭型盾構。在這一年稍后時間,Beach在紐約生產(chǎn)了類似的盾構。圓形盾構的第一次使用是在1869年,Barlow 和Great Head把他們的裝置用于泰晤士河下的塔式地鐵建設,直徑為2.1m。不管隧洞的名稱如何,它的使用都是在交通行業(yè)。Beach同樣在1869年用他的圓形盾構來建設已經(jīng)論證的紐
55、約地鐵系統(tǒng)項目。該工程隧洞直徑2.4m、長90m,并用氣壓推動地鐵卡車做了試驗。</p><p> 下面介紹幾種利用盾構原理建設的隧道。</p><p> 軟巖隧洞 一些隧洞全部地或部分地通過軟巖石。在這種非常軟的巖石中,很少或不需要爆破,因為它很容易被開挖。</p><p> 最初,矢板式用于軟巖建設隧洞的唯一方法。矢板是極重的厚板,大約有1.5m長,端部
56、被削尖。在掌子面它被插入水平撐桿頂部。這樣矢板沿著巖面導入且向外傾斜。在所有的頂桿被導入其長度的一半后,放置肋木,它橫過頂桿外露端以計量外端的變形。矢板可提供隧洞支撐延展,而矢板下的工作面會膨脹。當矢板到了板的末端,加上新的肋木支撐,為了隧洞下一步進尺,再把矢板沿隧洞面導入。</p><p> 利用壓縮空氣可以簡化軟化巖開挖工作。在隧洞內裝上氣塞孔,人和設備可通過氣塞孔,在隧洞工作面氣壓保持不變,這樣在開挖時,
57、使洞室面不致發(fā)生破壞,一直到肋木或其他支撐被安裝上。</p><p> 另一種方法使用液壓作為盾構動力,它的后面沿隧洞圓周安裝鑄鐵板或鋼鐵板。這樣在開挖時鋼板對隧洞提供了充分支撐,除此之外在洞內人員有一個充分的工作空間。</p><p> 水下隧洞 施工最困難的隧洞可以斷言是在河流或其他水位以下相當深處。在這種情況下,水會通過孔隙和裂隙滲漏,開挖則是在隧洞以上水位的水壓下進行。在硬黏
58、土中開挖隧洞,水量很小,可用水泵抽水。在孔隙發(fā)育的地方,用壓縮空氣方法以隔斷水流。隨著隧洞深度的增加空氣壓力也要增加。</p><p> 對阻止軟巖壓力來說,圓形盾構大部分是有效的,因而盾構開挖的隧洞是圓形的。盾構一度由鋼板和角支撐構成,而且有很重的拉桿隔板橫過工作面。隔板上有數(shù)個帶門的通道,以至于工人在盾構前面可進行開挖。更進一步發(fā)展,盾構可以向前推壓進入河床泥沙物質中,這樣通過門把泥排出并進入隧洞,最后把碎
59、屑泥移走。盾構的圓形套管在隔板前可伸出幾英尺以切割隧洞周邊。后部或尾部在盾構體后伸延幾英尺以保護作業(yè)工人。在大的盾構中,在盾構后部沿隧洞周邊使用升降臂來裝配金屬支撐扇形片。</p><p> 盾構前移所受到的壓力會超過48.8Mpa。液壓千斤頂可克服這樣大的壓力向前推動盾構,這時在盾構的外表面產(chǎn)生約245Mpa的壓力。</p><p> 利用可變推力千斤頂會使盾構行駛,從左到右、從上到
60、下都可做到,這樣隧洞可左、右、上、 下改變它的方向。每次前移千斤頂要對隧洞襯砌加反力。每次循環(huán)是前推、襯砌、出渣,然后是另一次循環(huán)。盾構開始應用于1955年紐約城林肯隧洞的第三條管線,其長度5.5m,直徑9.6m。前移一次達81.2cm,在其后可裝配81.2cm支撐環(huán)。</p><p> 鑄鐵扇形片在盾構后面隧洞裝配中得到普遍使用。把鑄鐵片在洞內進行裝配并用螺栓固定在一起,這樣在不長時間內起到加固隧洞和防水的作
61、用。在林肯隧洞第三管道,每一扇片長2m,寬81.2cm,厚35.5cm,重大約1.5噸。每環(huán)有14個扇片組成,它們之間用螺栓固定。螺栓是先用手工然后用機械擰緊。在鑄鐵片被裝配后立即對連接處加以封堵以確保永久隔水。</p><p> 盾構在地下環(huán)境中得到普遍使用,因為這里不能經(jīng)受很長時間自穩(wěn)。在地下,盾構的優(yōu)勢除了保護工作人員和設備對外裝配鋼肋、襯板在時間上是可行的,或在洞室地壓和移動變?yōu)椴焕蛩厍霸诙軜嬑膊肯虏?/p>
62、可澆筑混凝土扇形片。</p><p> 與盾構使用的主要相關問題之一就是駕駛。不均一地壓會作用在外殼上使有離開軌道和坡道的趨勢。這一問題對封閉式底板盾構特別突出以致使盾構脫離軌道或滑軌。在單個推力千斤頂上利用可變液壓駕駛是可行的。如果盾構準備潛水,在仰拱千斤頂上加壓可阻止這一趨勢。按要求使盾構穿越幾英尺是可行的。雖然使用激光可幫助駕駛者給出軌道和坡度資料,但一旦盾構脫離了它的軌道,它的平衡塊會阻止它回到軌道上。
63、在地下不同條件下,如有礫石的黏土也會給駕駛帶來問題。</p><p> 盾構在一個理論上的缺陷是在支撐和洞室表面之間會有環(huán)行空間。當在盾構尾部安裝支撐系統(tǒng),個別支撐構件由于尾部外殼的厚度會與洞室表面分離開。當采用鋼肋時,環(huán)行空間要用木塊填充,這時盾構前移會使個別鋼肋露出來。一個連續(xù)的支撐系統(tǒng)也會存在不同的問題。在這一情況下,填充料如豆粒石或漿液用泵打到支護系統(tǒng)的后面,以填充支護系統(tǒng)與洞室表面之間的空間。<
64、/p><p> 盾構的主要問題是地壓。地壓一開挖就會發(fā)生,對盾構會產(chǎn)生兩方面的作用:為了盾構推動需更大推力和在盾構結構構件內應力會增加。在預定地壓下盾構應設計成能承受得住和達到抵抗地壓的作用。設計者選取的壓力應為常規(guī)隧洞設計計劃最大地壓的一個百分值。在一些情況下,不幸的是盾構并沒有考慮可能達到地壓就施工了。當?shù)貕撼^設計值時,盾構會發(fā)生“黏住”。地壓在外殼上的摩擦值要比千斤頂推力值大。為了克服這種情況,可把膨脹巖泥
65、漿打到外殼和巖面之間,并推動它以及用動力沖擊盾構都有使被黏住盾構移動的可能。</p><p> 由于地壓會隨時間增加駕駛盾構的基本規(guī)則是使其保持“動態(tài)”。由于盾構部分零件有損壞,它們會不規(guī)律地晃動。當靜止盾構受到的地壓不斷增加,最終超過其結構極限開始破壞。盾構發(fā)生損壞的一個實例是1968年在加利福尼亞,這時有兩臺盾構在Carly V. porter隧洞施工,由于過大的地壓盾構被埋,且變形超過了使用極限。Port
66、er隧洞中的一個盾構在一個相當好的地方由于承壓水斷層作用使其無法前移,要求充填隧洞擋板。當合同商在控制條件下把它帶到工作面時,滑板壓力開始增加。隨著工作面條件趨于穩(wěn)定,合同商準備恢復施工,發(fā)現(xiàn)這時盾構被黏住不動。沒有什么方法能移動它,且隨著地壓增加會使盾構遭到破壞。</p><p> 對傾斜地面壓力效應來說,在設計中標準裝置切割刃的半徑比主體半徑大幾英寸。這樣壓力使盾構外殼承載之前,可允許地面有一定程度的移動。
67、另外一種辦法,只是理論上的還沒有進入實踐,即稱“西瓜種”的設計。對于盾構外形來說,理論上叫“不間斷錐”。切割刃半徑最大,在尾端的尾刃半徑最小。由于這樣的外形,任何大小的向前移動均會使外壓力降低。</p><p> 在盾構內,在垂直方向上有2.4~3.0m間距的工作臺。這些工作臺可用于工人開挖工作面、鉆探和裝藥。如果需要的話,可調整隧洞擋板系統(tǒng)。從隧洞擋板考慮要把液壓千斤頂裝在工作平臺的下面。如果是預裂爆破,作為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 盾構隧道
- 隧道專業(yè)畢業(yè)設計外文翻譯--我國隧道盾構掘進機技術的發(fā)展現(xiàn)狀
- 隧道外文翻譯
- 盾構隧道排水通風
- 盾構法隧道施工
- 日本隧道維修外文翻譯
- 日本隧道維修外文翻譯
- 上海長江盾構隧道施工
- 日本隧道維修外文翻譯(譯文)
- 盾構隧道高精度盾構管片鋼模設計過程
- 盾構隧道管片結構分析.pdf
- 盾構隧道沉降數(shù)值模擬.pdf
- 盾構隧道管片詳細設計研究
- 試談隧道盾構的施工
- 地鐵盾構隧道畢設論文
- 地鐵盾構隧道畢設論文
- 日本隧道維修外文翻譯(譯文).doc
- 地鐵盾構隧道設計施工要點
- 某盾構隧道下穿既有盾構隧道變形超限原因解析及控制研究.pdf
- 淺談盾構法隧道施工盾構姿態(tài)控制和管片拼裝
評論
0/150
提交評論