版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 中文972字</b></p><p> 堿性鋼包渣對(duì)MgO-C耐火的酸腐蝕造成了物質(zhì)中碳含量的影響 </p><p> THE INFLUENCE OF CARBON CONTENT ON THECORROSION OF MGO-C REFRACTORY MATERIALCAUSED BY ACID AND ALKALINE LADL
2、E SLAG</p><p> This paper describes an investigation of the influence of increasing carbon content on the corrosion of MgO-C refractory material by molten slag. The refractory material contained mass fracti
3、on of 98 % MgO, approximately 2 % Fe2O3, and graded quantities from 3 % to 18 % C. The corrosion was investigated in melts of reduction ladle slags at a temperature of 1600 °C in laboratory conditions. A sample of r
4、efractory material with dimensions of 10 × 10 × 100 mm was submerged into the molten slag and </p><p><b> RESULTS</b></p><p> The chemical composition of the slags before
5、 the exposure is given in the Table 1.</p><p> Table 1 shows that the acidic slag contains very little of the CaF2 (w = 0.82 %), and that the alkaline slag contains 7.18 % CaF2, added to increase its fluidi
6、ty. </p><p> Table 1: Chemical composition and alkalinity of the slags used for the corrosion test</p><p> Tabela 1: Kemi~na sestava in bazi~nost `linder, ki sta bili uporabljeni za preizkuse
7、korozije</p><p> The MgO content of the slags after exposure to the refractory material is shown in Tables 2 and 3. The tables also contain increments of the MgO content and the increments related to the in
8、itial MgO content in the slags (MgO). The six tested samples of refractory material differed only in terms of the carbon content, graded from 3 % to 18 %. However, sample 5 % contained 15 % C in addition to an antioxidan
9、t. </p><p> Table 2: Changes to the MgO content in an acidic slag for different carbon contents in the refractory material</p><p> Tabela 2: Spremembe vsebnosti MgO v kisli `lindri pri razli~n
10、i vsebnosti ogljika v ognjevzdr`nem materialu</p><p> Table 3: Changes to the MgO contents in an alkaline slag for different carbon contents in the refractory material</p><p> Tabela 3: Spreme
11、mbe vsebnosti MgO v bazi~ni `lindri pri razli~ni vsebnosti ogljika v ognjevzdr`nem materialu</p><p> Figures 1 and 2 show the change of the MgO content in slags with respect to the carbon content in the ref
12、ractory material.</p><p> Figure 1: Change in the content of MgO in acidic slag with respect to the carbon content in the refractory material</p><p> Slika 1: Spremembe vsebnosti MgO v kisli `
13、lindri v odvisnosti od vsebnosti ogljika v ognjevzdr`nem materialu</p><p> Figure 2: Change in the content of MgO in the alkaline slag with respect to the carbon content in the refractory material</p>
14、<p> Slika 2: Spremembe vsebnosti MgP v bazi~ni `lindri v odvisnosti od vsebnosti ogljika v ognjevzdr`nem materialu</p><p> In order to enable a comparison of the quantitative effect of carbon conte
15、nt in the MgO-C refractory material on its corrosion intensity by acidic and alkaline slag, the changes in the MgO and carbon contents in Tables 1 and 2 were transformed according to Equations (1) and (2). </p>&l
16、t;p><b> ?。?)(2)</b></p><p><b> where:</b></p><p> is the transformed form of the independent variable of the quantity lg w(C), 1</p><p> is the transfo
17、rmed form of the dependent variable of the quantity lg w(?MgO), 1</p><p> xi is the concrete value of the independent variable of the quantity lg w(C), 1</p><p> yi is the concrete value of th
18、e dependent variable of the quantity lg w(?MgO), 1</p><p> X max; xmin, ymax; ymin are the maximum or minimum values of the variable quantities lg w(C) and lg w(?MgO), 1</p><p> The quantities
19、 thus transformed were analysed with linear regression and the equations of the straight lines, shown in Figures 3 and 4, were obtained.</p><p> Figure 3: Dependence of w (?MgO) in the acidic slag on the ca
20、rbon contents in refractory material after linear regression of the experimental data</p><p> Slika 3: Odvisnost MgO v kisli `lindri pri razli~ni vsebnosti ogljika v ognjevzdr`nem materialu, linearna regres
21、ija eksperimentalnih rezultatov</p><p> Figure 4: Dependence of w(?MgO) in the alkaline slag on the carboncontents in refractory material – evaluated by linear regression of the experimental data</p>
22、<p> Slika 4: Odvisnost MgO v bazi~ni `lindri pri razli~ni vsebnosti ogljika v ognjevzdr`nem materialu, linearna regresija eksperimentalnih rezultatov</p><p> Figures 3 and 4 indicate that the simila
23、rities of the dependencies expressed by the correlation coefficient are, in both cases, close, and the value of P is even lower than 0.05. The value P indicates the statistical significance of the tested factor. A value
24、of P < 0.05 means that the tested factor has a statistically significant impact on the values of the given parameter. The effect of increasing the carbon content on reducing the wear of the MgO-C refractory material i
25、s significant for both </p><p> CONCLUSIONS</p><p> The acidic slag (B1 = 0.94) dissolves a great deal more MgO-C refractory material, i.e., within the range 4.1–11.8 % MgO. The relative chang
26、e of the MgO content in the slag is in the range= 51.2–147.5 %. </p><p> The alkaline slag (B1 = 4.43) dissolves significantly less MgO-C refractory material, i.e., within the range 0.6–4.1 % MgO, and the r
27、elative change of the MgO content is= 10.7–73.2 %</p><p> The favourable effect of carbon in MgO-C refractory material on delaying the corrosion is stronger, particularly above 10 % C, for both slags, but m
28、ore in the acidic slags with low contents of easily reducible oxides. </p><p> The dependence w(?MgO) = f(w(C)) is hyperbolic and shows a good correlation with the experimental data.</p><p> T
29、he possible effect of an antioxidant was not detected, probably because the tests were performed with reduction ladle slags.</p><p> 堿性鋼包渣對(duì)MgO-C耐火的酸腐蝕造成了物質(zhì)中碳含量的影響 </p><p> 本文介紹了熔渣對(duì)鎂碳耐火材料的腐蝕增加碳
30、含量的影響進(jìn)行調(diào)查。耐火材料中98%的MgO的質(zhì)量分?jǐn)?shù),約2%的氧化鐵,并從3%到18%C.腐蝕,減少鋼包渣熔體調(diào)查在1600ç在實(shí)驗(yàn)室條件下的溫度梯度的數(shù)量。10 *10 *100毫米的尺寸耐火材料的樣本浸入熔渣和暴露60分鐘到渣的腐蝕作用。耐火材料暴露后的渣冷卻下來(lái),并提交到化學(xué)分析。腐蝕試驗(yàn)后的爐渣中MgO含量比較前后熔體中MgO含量的金額確定和耐火材料的腐蝕程度量化。實(shí)驗(yàn)實(shí)現(xiàn)了使用最后的爐渣,鋼包爐(LF),強(qiáng)堿性渣W
31、(氧化鈣)/ W(二氧化硅)= 4.43,酸性爐渣W(氧化鈣)/ W(SiO2)的= 0.94氟化鈣含量不同。EUREKA E!3580和FI-IM4/110 IMPULS項(xiàng)目的框架內(nèi)開(kāi)展工作。 </p><p> 耐火材料暴露后各化學(xué)成分含量在表1。</p><p> 表1顯示酸性渣中含有極少量的氟化鈣(=0.82%),而且堿性渣中含有7.18% 氟化鈣,增加其流動(dòng)性增加。</
32、p><p> 耐火材料暴露后爐渣中氧化鎂含量如表2和表3。該表還包含氧化鎂含量的增量和增量與最初的氧化鎂含量的爐渣(鎂)。六個(gè)測(cè)試樣品的耐火材料只有在不同的碳含量,等級(jí)從3%到18%。然而,樣本5%載15%除了抗氧化劑。</p><p> 圖1和圖2顯示變化的氧化鎂渣中相對(duì)于碳含量的耐火材料。</p><p> 為了使比較的定量影響碳含量鎂碳耐火材料的腐蝕強(qiáng)度的酸
33、性和堿性渣,變化的氧化鎂和碳含量在表1和表2轉(zhuǎn)化根據(jù)方程(1)和(2)。 </p><p><b> ?。?)(2)</b></p><p><b> 其中:</b></p><p> 是獨(dú)立變量的轉(zhuǎn)化形式的數(shù)量 是變量的轉(zhuǎn)化形式的數(shù)量</p><p> Xi是獨(dú)立變量
34、的具體值的數(shù)量 Yi是變量的具體值的數(shù)量</p><p> X max; xmin, ymax; ymin 是變量的最大值或最小值</p><p> 通過(guò)對(duì)數(shù)據(jù)的分析,獲得了線性回歸方程的直線,顯示在圖3、4</p><p><b> 圖三</b></p><p><b>
35、圖四</b></p><p> 圖三和圖四表面,相似依賴性的相關(guān)系數(shù),在這兩種情況下,關(guān)閉,和價(jià)值的更是低于0.05。該值表示測(cè)試的因素的統(tǒng)計(jì)意義。值<0.05,測(cè)試的因素對(duì)統(tǒng)計(jì)值的給定參數(shù)有重大影響。影響碳含量增加對(duì)減少磨損鎂碳磚耐火材料是重要的兩種渣–這45°方法,顯然是直線的斜率和相應(yīng)的角度,在酸性渣分散的值較小,斜坡的依賴性更大</p><p><
36、;b> 結(jié)論</b></p><p> 酸性渣(B1 = 0.94)溶解大量鎂碳耐火材料,例如,范圍內(nèi)的4.1–11.8%氧化鎂。相對(duì)變化的氧化鎂含量的爐渣的范圍是51.2–=147.5%。</p><p> 堿性渣(B1 = 4.43)溶解大大低于鎂碳耐火材料,例如,范圍內(nèi)的0.6–4.1%氧化鎂,和相對(duì)變化的氧化鎂含量=10.7–73.2%</p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 堿性鋼包渣對(duì)mgo-c耐火的酸腐蝕造成了物質(zhì)中碳含量的影響畢業(yè)論文外文翻譯
- mgo-c質(zhì)耐火材料簡(jiǎn)介
- 電磁場(chǎng)對(duì)MgO-C耐火材料抗渣蝕性能的影響研究.pdf
- 鋯英石對(duì)MgO-C質(zhì)耐火材料性能的影響研究.pdf
- 電磁場(chǎng)對(duì)MgO-C耐火材料抗渣動(dòng)力學(xué)的影響研究.pdf
- 不同碳源及碳含量的MgO-C耐火材料及其與鋼液的相互作用.pdf
- 熱處理氣氛對(duì)MgO-C耐火材料顯微結(jié)構(gòu)和性能的影響.pdf
- 鋼包用含碳耐火材料侵蝕機(jī)理研究.pdf
- 耐火材料對(duì)鋼中氧含量影響的實(shí)驗(yàn)研究.pdf
- Ni催化作用下低碳MgO-C耐火材料的顯微結(jié)構(gòu)特征及其性能研究.pdf
- 鈉鹽對(duì)耐火材料的腐蝕機(jī)制研究.pdf
- Sialon含量對(duì)鎂碳及鋁-碳化硅-碳耐火材料性能的影響.pdf
- 外文翻譯---用后耐火材料的再生利用
- 添加劑對(duì)鋁碳質(zhì)耐火材料性能的影響
- 旋轉(zhuǎn)浸漬法研究精煉鋼包渣線耐火材料的損毀過(guò)程及其影響因素.pdf
- 耐火材料詞匯
- 高硅菱鎂礦—碳系原料制備MgO-SiC-C系復(fù)合耐火材料.pdf
- 耐火材料專題
- MgO-ZrO2質(zhì)耐火材料的制備及抗渣侵蝕機(jī)理研究.pdf
- 熱處理對(duì)含碳耐火材料的性能影響及機(jī)理研究
評(píng)論
0/150
提交評(píng)論