版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 附錄2</b></p><p> ESEARCH ARTICLE</p><p> Eduardo E. ALONSO, Rafaela CARDOSO</p><p> Behavior of materials for earth and rockfill dams:</p><p&g
2、t; Perspective from unsaturated soil mechanics</p><p> © Higher Education Press and Springer-Verlag Berlin Heidelberg 2010</p><p> Abstract :The basis of the design of earth and rockfil
3、l dams is focused on ensuring the stability of the structure under a set of conditions expected to occur during its life. Combined mechanical and hydraulic conditions must be considered since pore pressures develop durin
4、g construction, after impoundment and in drawdown. Other instability phenomena caused by transient flow and internal erosion must be considered. The prediction of the hydromechanical behavior of traditional and non-trad
5、ition</p><p> Keywords : ams, unsaturated soil mechanics, suction, rockfill, clayey soil, mixture</p><p> 1 Introduction</p><p> The basis of the design of earth and rockfill dam
6、s is focused on ensuring the stability of the structure under a set of conditions expected to occur during its life. The stability of the upstream and downstream slopes must be guaranteed at the end of the construction b
7、ut also during reservoir impoundment and the operational phase, including drawdown and long-term steady state conditions as a limiting case. A fundamental aspect of the analysis is the generation of pore pressures during
8、 the constr</p><p> Failures associated with hydraulic fracture and internal erosion is largely reported in the literature. Two recent cases of failure caused by collapse and internal erosion are presented
9、in the first part of the paper. The hydromechanical behavior of the materials used in the construction of the earth structures are used to explain their failure. </p><p> An additional source of complexity
10、is the fact that different types of materials are used. For traditional dams, impervious clayey materials are used for the core, rockfill materials (any type of rock) are used for shells and granular materials are used f
11、or filters. However, for sustainability constraints and environmental reasons, the use of marginal materials, i.e., materials that traditionally would not be used in the construction of dams, is becoming frequent. Such i
12、s the case of soft rocks </p><p> Figure 1 is a photograph of Lechago Dam in Teruel, Spain. A very traditional design was adopted. Three distinct zones can be distinguished: the core, built with regular com
13、pacted soils (low to medium plasticity sandy clays, clayey sands and clays), the shoulders built with indurated shale rockfill and the filter built with fine granular materials. Other solutions are also adopted in the de
14、sign as a consequence of the available material for the construction. For example, rockfill materials can be</p><p> Compacted soft rocks are also used in the construction of dams and Albagés Dam, Llei
15、da (Spain) is an example (Figure 3 shows an experimental embankment being built during the design of this dam). Compacted soft rocks (fragments of evolving rocks such as schist, marls and other clayey rocks) are differen
16、t from rockfill (fragments of hard rock) because of the geological nature of the rocks used. After compaction and hydration, the large fragments of soft rock degrade and result in a material inter</p><p> M
17、ixtures of rock and fine materials are other alternative materials. The characterization of their hydraulic and mechanical properties is usually complex because it depends on the nature of the materials, the proportions
18、used and many other factors. Figure 4 is a photograph of the material used to build Villaveta Dam in Navarra, Spain (a natural mixture of gravels with clayey soil).</p><p> Each type of material has a uniqu
19、e behavior and its own particularities should be considered in dam design.Experience earned in the past decades is being used in design when traditional materials are adopted. Because it is no longer feasible to select “
20、the best” emplacement or to import “good” materials, virtually any kind of soil or rock is expected to be used in the design of dams. Moreover, as new projects are being commissioned in Africa, South America and Asia, lo
21、cal soils and rocks outcrop</p><p> 2 Two failures</p><p> Two cases are presented where collapse deformations were followed by internal erosion. The first case concerns an uncontrolled and d
22、angerous leak and the second the rupture of a dam caused by localized collapse during impoundment. </p><p> 2.1 Differential collapse of foundation during the first filling</p><p> The La Mol
23、ina pond was built for water storage in the Catalonian Pyrenees. As shown in the plan view in Fig. 5, a 15m high rockfill dam covered by an impervious membrane was built taking advantage of the topographic conditions. A
24、pipe system (see Fig. 5) was included for drainage under the membrane. It was buried in a gravel and sand fill layer. No special attention was taken in the compaction of this fill layer, which was done probably dry of op
25、timum. </p><p> A few sinkholes were observed after full impoundment. Water whirlpools marked their position directly above drainage pipes (see sketch in Fig. 5). There were attempts to plug the holes by me
26、ans of cement bags thrown from helicopters. The desperate procedure was partly successful but it was eventually decided to empty the pond. </p><p> Tunnel-shaped depressions were discovered at the whirlpool
27、 positions. The membrane was ruptured in those points. The granular base was excavated and the pipe drains were uncovered (see Fig. 6). They were found broken and filled, in relatively long distances, with a granular mat
28、erial. High speed water was capable of dragging the gravels inside the filter pipes. </p><p> A possible explanation for the failure is described as follows (see Fig. 7): Hydrostatic loading after impoundme
29、nt caused probably some initial differential settlements of the gravel and sand fill, poorly compacted. However, it is believed that the progressive saturation of this granular layer, under the total stresses transmitted
30、 by the water level in the pond, led to a soil collapse, which was nonhomogeneous. Then the differential collapse led to the breakage of the pipes at some points. Sand </p><p> This case was not developed f
31、urther but it illustrates the need to ensure good compaction conditions of all the materials. They must be adequate to minimize the penalizing effects of their expected behavior in case of being fully</p><p>
32、; saturated either in service conditions or by accident.</p><p> 2.2 Fill collapse during impoundment</p><p> An artificial pond was created in an arid environment by building a homogeneous d
33、am covered upstream by an impervious HDPE membrane. The construction took advantage of the ground topography so that the dam was necessary only in part of the pond perimeter, as shown in Fig. 8. The dam was built having
34、a maximum height of 20 m at the location of the creek, but progressively decreased in height in the rest of the dyke perimeter. Figure 8 shows a sketch of the small watershed area drained by a small</p><p>
35、 Low plasticity sandy clays and high plasticity clays were compacted within short distances within the embankment. There are also indications that the achieved field densities were lower than the optimum Normal Proctor
36、values. Wetting under load tests performed on some specimens indicated a high collapse potential. In two tests performed, collapse deformations reached values of 3.8% (for a vertical load of 85 kPa) and 8.3% (for a verti
37、cal load of 245 kPa). These two vertical loads are well within</p><p> On first impoundment, when the water level reached 15m over the foundation, a section of the dam, located directly above the position o
38、f the creek, failed, causing a violent flood. Figures 10 and 11 show the failed section. The development of the failure was not observed. When the photographs in Figs. 10 and 11 were taken, the reservoir was practically
39、empty. </p><p> Field observations (see Fig. 12) indicated that the fill could have a significant collapse potential and, probably, a susceptibility to internal erosion. Troughs and sinkholes were observed
40、in the downstream slope of the dam a few years after the collapse. The compacted soils (they are observed in the background of Fig. 12, where the almost vertical slope of the failed section remained stable a few years af
41、ter the dam failure) were rather heterogeneous.</p><p> It is acceptable to assume that any rain water falling into the pond area during construction was eventually drained out through the creek bed. This s
42、ituation could only change in the final stage of the works, when the HDPE membrane covered the pond and the upstream slopes of the dam. </p><p> A possible explanation for the failure is described as follow
43、s:</p><p> Insufficient compaction of the fill, probably dry of optimum, builds a collapse potential into the fill. This collapse potential develops when a given point within the fill experiences an increas
44、e in confining stress over the initial yield stress induced by compaction. The collapse strains will develop if the water content increases. </p><p> The fill located immediately above the creek holds the m
45、ost critical situation:</p><p> here, the dam reaches the maximum height and the seeping waters through the creek bed could easily lead to a capillary rise affecting a certain thickness above the original g
46、round level. Therefore, the fill volume having the highest collapse potential is viewed as an elongated mass of compacted soil lying directly above the creek. A collapse of this volume will tend to create voids and crack
47、s, which could lead to a preferential path connecting the upstream and downstream slopes of the dam.</p><p><b> 譯文</b></p><p> 愛德華五,阿隆索拉斐拉卡多佐</p><p> 從非飽和土力學的角度,土石壩材料
48、的特性</p><p> ©高等教育出版社與施普林格出版社2010年柏林海德堡</p><p> 摘要 土石壩設計依據(jù)的重點是,在其生命中可能出現(xiàn)各種條件下的確保結(jié)構(gòu)穩(wěn)定。結(jié)合機械和水力條件,必須考慮孔隙壓力的發(fā)展,因為空隙壓力在施工期間發(fā)展,蓄水后下跌。另外,瞬變流和內(nèi)部侵蝕造成的不穩(wěn)定現(xiàn)象也必須加以考慮。因此作者在大壩建設中使用的傳統(tǒng)和非傳統(tǒng)材料的流體力學特性的預測成為
49、根本。大壩的建設中使用的材料涵蓋了從多種粘土材料到堆石。 從廣義上講,它們是碾壓材料,所以是不飽和材料。作者在文件中,依據(jù)大壩建設采用傳統(tǒng)的材料特性,對現(xiàn)有的知識水平進行總結(jié)。常規(guī)碾壓材料(具有重大粘土含量),堆石和壓實軟巖研究更多細節(jié)。后者是非傳統(tǒng)材料。他們分析,因為它們的使用,以及土壤和巖石混合使用,是可持續(xù)發(fā)展的所必須的。</p><p> 關(guān)鍵詞 壩,非飽和土力學,吸力,堆石,粘質(zhì)土,混合物</
50、p><p><b> 1簡介</b></p><p> 土石壩設計的基礎(chǔ),重點確保發(fā)生在其預期生命中各種條件下的結(jié)構(gòu)穩(wěn)定性。不但在施工結(jié)束階段而且在水庫蓄水和運行階段,上游和下游邊坡的穩(wěn)定性必須保證,包括下跌和長期穩(wěn)定的狀態(tài)作為一個限制條件?;痉矫娴姆治鍪强紫秹毫υ谑┕?,并在初次蓄水,水庫蓄水及水位驟降的情況下產(chǎn)生。其他方面也是令人關(guān)注的,如在施工和運行階段的結(jié)構(gòu)變
51、形,并通過水力壓裂,內(nèi)部侵蝕,長期影響和其他作用聯(lián)合引起的事故。</p><p> 與水力侵蝕和內(nèi)部侵蝕的相關(guān)的失事主要是文獻報道。最近兩次倒塌和內(nèi)部侵蝕造成的失事,在該文件的第一部分提出。土石壩結(jié)構(gòu)的建筑材料流體力學特性來解釋它們的失事。</p><p> 另外一個復雜的原因是不同材料的使用。對于傳統(tǒng)的壩,粘土防滲材料的用作心墻,堆石材料(任何巖型)用于殼狀物和粒狀物料的過濾層使用。
52、然而,由于可持續(xù)發(fā)展制約因素和環(huán)境的原因,邊際使用材料,即傳統(tǒng)上不會在大壩建設使用的材料,已經(jīng)變得越來越頻繁使用。這就是一部分軟巖或演變的巖石和土壤或巖石蒸發(fā)的比例情況。</p><p> 圖1是Lechago大壩在特魯埃爾,西班牙的照片。一個非常傳統(tǒng)的設計獲得通過。三個不同的區(qū)域可以有所區(qū)別:心墻,常規(guī)(低到中等塑性粘土砂,粘土砂和黏土)夯實土壤建成,建成與壩肩硬化頁巖面板和細顆粒材料建成的過濾層。其它解決方
53、案還通過了作為建筑用材料的設計結(jié)果。例如,堆材料可用于不透水材料解決方案,以及于壓軟巖相結(jié)合。圖2顯示了卡拉科萊斯大壩在圣胡安,阿根廷,聯(lián)合解決方案,采用堆,沖積礫石,礫石和砂作出的,和上游混凝土防滲墻.</p><p> 夯實軟巖也用于壩和阿爾瓦赫斯大壩,萊里達建設(西班牙)就是一個例子(圖3顯示了一個正在建造的試驗堤在此壩設計)。夯實軟巖(如不斷發(fā)展的巖石碎片片巖,如泥灰?guī)r和,其他粘土巖)與堆石(堅硬的巖石
54、碎片)不同,因為巖石地質(zhì)性質(zhì)。經(jīng)過壓實和水化,軟巖大片段降解的材料造成土壤和巖石之間的中間,相對不透水,但比傳統(tǒng)堆石,有更可壓縮和更敏感干濕周期。</p><p> 巖石混合物和細顆粒材料是其他替代材料。其液壓和機械性能表征通常是復雜的,因為它由對材料的性質(zhì),使用的比例和許多其他因素而定的。圖4是一個建立納瓦拉,西班牙Villaveta大壩材料照片(一粘性土和礫石自然的混合物)。</p><
55、p> 每類材料具有獨特的特性和自己的特殊性,應在大壩設計中考慮。當使用傳統(tǒng)材料時,用過去數(shù)十年獲得的經(jīng)驗設計。因為它不再是可行的選擇“最好的”安置或?qū)搿傲己谩钡牟牧?,幾乎任何類型的土壤或巖石,預計將在大壩設計中的應用。此外,由于新項目正委托在非洲,南美和亞洲,當?shù)責釒Ш突鹕降貐^(qū)出露的土壤和巖石必須使用。這些是在北半球溫帶氣候地層發(fā)現(xiàn)沖積和沉積土壤和常規(guī)的土壤的理解是不同的。對土壤工程師來說,非傳統(tǒng)材料的使用是一個重要的挑戰(zhàn)。非
56、飽和土力學理論的發(fā)展在很大程度上程度,提供理論和壓實土的特性,專門的測試和計算工具,它可以改善土石壩工程藝術(shù)的現(xiàn)況模型。</p><p><b> 2 兩次失事</b></p><p> 兩起案件的塌陷變形情況發(fā)生在內(nèi)部侵蝕之后。第一個案件涉及失控和危險的泄漏,第二個是由局部坍塌造成大壩蓄水期間破裂。</p><p> 2.1 發(fā)生在初
57、次蓄水不同基礎(chǔ)的坍塌 </p><p> 在莫利納建池的水儲存在加泰羅尼亞比利牛斯山脈。正如圖5中所示的計劃的看法。一個15米高的墻堆石壩防滲膜覆蓋利用地形條件的優(yōu)勢建造。管道系統(tǒng)(見圖5)包括在膜下排水。這是埋在碎石和沙子填充層。不用特別注意在這個填充層的壓縮,這樣做是可能的最佳壓實度。</p><p> 少數(shù)灰?guī)r坑進行全面蓄水后被發(fā)現(xiàn)。水漩渦標志著其正上方排水管位置(參見圖草圖5)
58、。有人試圖從直升飛機投擲水泥袋堵塞這些孔。這是一個絕望的過程,只有部分是成功的,但最終決定清空水池。</p><p> 在漩渦點發(fā)現(xiàn)了隧道狀凹陷。在這些漩渦點,該膜破裂。粒狀地基開挖和管道顯露出來(見圖6)。在相當長的距離內(nèi)發(fā)現(xiàn)顆粒材料填補和破碎。高速水有拖過濾管道內(nèi)的礫石的能力。</p><p> 對失事的描述一種可能的解釋如下(見圖7):蓄水后靜負荷可能引起的一些碎石和沙子填充,壓
59、實初步產(chǎn)生不均勻沉降差。然而,人們認為這個顆粒層逐漸飽和下,總應力轉(zhuǎn)到池塘的水下,導致了土壤崩潰,這是非齊次。不同倒塌導致水管在一定程度的破裂。砂和礫石進入管道產(chǎn)生局部下陷,并最終導致在池塘的頭部下水中的膜破損。一旦膜破裂,該顆粒層局部侵蝕可能擴大初始破裂。水已經(jīng)在這些點自由逃脫。</p><p> 這個事件沒有進一步發(fā)展的需要,但它說明,需要確保所有材料具有壓實良好條件。他們必須盡量減少他們在被預期的特性的懲
60、罰,以防在不是在服務條件或意外條件下被完全飽和的影響。</p><p> 2.2 蓄水期間填充物坍塌</p><p> 在一個人造池塘干旱環(huán)境,建設一個覆蓋均質(zhì)壩上游防高密度聚乙烯膜防滲。利用地面地形的優(yōu)勢,使大壩必要在池塘周圍部分,如圖8所示. 大壩建成后在小溪位置,最大高度20米,但在堤壩周圍其他部份高度逐漸下降。圖8顯示了小流域的一個小溪流排水區(qū)示意圖。圖9顯示了大壩斷面在原有
61、的排水河的位置后來由池塘面積占用。</p><p> 低塑性粘土和可塑性高砂質(zhì)粘土在河堤的短距離內(nèi)被壓縮。也有跡象表明,所取得的實地密度均低于正常普羅克托最佳值。根據(jù)一些濕潤標本進行負載測試圖顯示出高潛在倒塌。兩個測試,測試坍塌變形達到了3.8%(垂直負載85千帕)和8.3%(245千帕一垂直荷載).圖9 這兩個載荷在期望最大垂直應力范圍內(nèi)。</p><p> 在首次蓄水,當水位達到了
62、超過基礎(chǔ)15米,一個大壩位于河正上方的位置,易發(fā)生失事,導致洪水泛濫。圖10和11顯示失事的部分。失事的發(fā)展并沒有觀察到。圖10和圖11的照片被采用,水庫幾乎空的。</p><p> 野外觀察(見圖12)表示,填補可能有明顯崩潰的可能,而且很可能是一個內(nèi)部侵蝕。觀察到在大壩下游槽和灰?guī)r坑坡,數(shù)年后倒塌。土壤的壓實(他們正在后臺觀察 圖12,大壩失事幾年后,垂直邊坡的破壞部分仍然保持穩(wěn)定)都相當混雜。</p
63、><p> 這是可以接受的假設,任何施工期間落進池塘的任何雨水最終都通過河床排出來。改變這種局面只能在工程最后階段,當高密度聚乙烯膜覆蓋的池塘和水庫上游山坡的最后階段。</p><p> 對失事一種可能的解釋的描述如下:</p><p> 填充材料壓實不足,可能的最佳的壓實度,構(gòu)建成一個潛在倒塌的危險。這潛在倒塌的開始發(fā)展時,在給定的點在圍填經(jīng)歷過的限制壓力增加初
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 飽和-非飽和土石壩滲流與穩(wěn)定數(shù)值分析.pdf
- 干濕循環(huán)對非飽和土力學特性影響及非飽和土本構(gòu)關(guān)系探討.pdf
- 土石壩外文翻譯---土石壩及溢洪道設計
- 銅尾礦砂的非飽和土力學特性及應用研究.pdf
- 庫水位變化下土石壩飽和-非飽和滲流場的數(shù)值分析.pdf
- 非飽和膨脹土力學特征的試驗研究.pdf
- 土石壩飽和-非飽和滲流數(shù)值模擬及應用研究.pdf
- 銅尾礦砂的非飽和土力學特性及應用研究(1)
- 非飽和土力學-中國地質(zhì)大學武漢
- 考慮非飽和土體的土石壩滲流與壩坡穩(wěn)定分析研究.pdf
- 土石壩飽和非飽和滲流場與溫度場耦合模型.pdf
- 外文翻譯--- 土石壩的施工
- Kriging法在飽和-非飽和土石壩壩坡穩(wěn)定可靠度分析中的應用研究.pdf
- 非飽和砂土力學特性研究及其與結(jié)構(gòu)相互作用分析.pdf
- 黃土非飽和力學特性的試驗研究.pdf
- 基于LU模型的土石壩溫度場與飽和-非飽和滲流場耦合分析.pdf
- 油氣管道隧道穿越非飽和土力學特性與支護穩(wěn)定性研究.pdf
- 非飽和土水力—力學特性影響機制的顆?!W研究.pdf
- 土石壩的評估和修復畢業(yè)設計外文翻譯
- 土石壩的施工畢業(yè)論文外文翻譯
評論
0/150
提交評論