版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p> 中文2350字,1618單詞</p><p> 出處:Wen P, Stapleton C, Li Y. Tension control of a winding machine for rectangular coils[C]// Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th International
2、 Conference on IEEE, 2008:2031 - 2037.</p><p> 本科畢業(yè)設(shè)計外文資料翻譯</p><p> 系 別: 工程技術(shù)系 </p><p> 專 業(yè): 機(jī)械設(shè)計制造及其自動化 </p><p> 姓 名:
3、 </p><p> 學(xué) 號: </p><p> 2011 年 12 月 28 日</p><p><b> 外文資料翻譯譯文</b></p><p> 矩形繞線機(jī)的張力控制</p><p> P Wen,C Stapleton,Y
4、Li</p><p><b> 摘 要</b></p><p> 本文介紹的是設(shè)計張力控制系統(tǒng)的測試,盡量減小張力的變化,其中包括流體動力占用肌肉手臂,流體蓄電池肌肉。首先,確定該模型和現(xiàn)有張緊系統(tǒng)。之后,在模擬上進(jìn)行理論的分析。仿真結(jié)果表明,電線由于速度的變化產(chǎn)生的長度變化的導(dǎo)致循環(huán)緊張波動。該模型的張力傳感器驗證了預(yù)測。成功設(shè)計的關(guān)鍵是消除張力的變化。我們建
5、議增加一項線平機(jī),其中包括一個蓄電池和拉緊裝置,取代傳統(tǒng)的氣缸與流體供電肌肉累加器。仿真結(jié)果表明,新的原型系統(tǒng)幾乎增加了一倍的繞線速度和承受的張力波動的能力。</p><p> 關(guān)鍵詞:張力控制: 繞線機(jī): 矩形線圈。</p><p><b> 一.引言</b></p><p> 每年在澳大利亞要制造數(shù)以千計的變壓器,連同電廠、變電站和電
6、力線路,配電變壓器為全國的商業(yè)及住宅提供電能。變壓器制造涉及繞組線圈生產(chǎn)。這些線圈通常由一對銅線在匝數(shù)之間夾上的絕緣紙層制成。它們通常是圓形或長方形。</p><p> 在線圈繞組上必須保持一致的張力。線圈的形狀對所采用的由拉緊產(chǎn)生的張力產(chǎn)生重大影響。對于一個圓形線圈的張力不會變化顯著,但矩形線圈則不同。作為一個矩形線圈,在送絲線圈上加快速度,減速的線圈會纏繞在機(jī)軸上。如圖1所示,這個速度的變化是由不斷變化的線
7、的長度導(dǎo)致。在圓線圈的情況下這不會有問題,因為在線圈上導(dǎo)線的接觸點(diǎn)是固定的。</p><p> 圖1:速度的變化導(dǎo)致繞組上線長度變化</p><p> 在機(jī)器上的導(dǎo)線和不同的主軸負(fù)荷緊張的結(jié)果各不相同,導(dǎo)致過度的力的變化和機(jī)械振動。這反過來可能會導(dǎo)致變化中的線圈電線交叉。當(dāng)這些問題出現(xiàn),糾正起來時很費(fèi)時間的。此外,工廠的產(chǎn)能線圈,在工廠的生產(chǎn)能力線圈是在工廠的總體能力的制約因素,因此任
8、何對線圈的輸出中斷都會影響到全廠。當(dāng)今市場上普通線材的張緊設(shè)置,是運(yùn)行在約5米/秒到30米/秒之間。我們通常的繞線速度超過10米/秒,公司的目標(biāo)是0.45毫米至4毫米的線達(dá)到至少20米/秒的速度。</p><p> 本文進(jìn)一步考察了張力的波動問題,并且在高速的繞線矩形線圈取得一致的張力關(guān)系。在下面的部分問題的作了說明,為現(xiàn)有的可用技術(shù)做了綜述。</p><p><b> 二.
9、背景</b></p><p> 如圖2所示,現(xiàn)有的卷繞系統(tǒng)使用感受到張緊墊,閥芯的電線被安裝到其住房垂直并且該線是通過導(dǎo)絲、導(dǎo)輪,然后到繞線機(jī)。張力的控制室通過的固定或松開鉗子來實(shí)現(xiàn)。</p><p> 圖2:現(xiàn)有電線的安裝和張力的設(shè)置</p><p> 毛氈墊是最簡單,最常用的線張力控制的方法之一。</p><p> 圖
10、2照片顯示主要組成部分和工作原理。上面的配置使用克鉗套用擠壓力量的感覺墊。該線是穿過感覺墊,因此應(yīng)用的感覺墊一些力也適用于電線。在操作中,運(yùn)動線路遲緩或張力的創(chuàng)建,對牙釉質(zhì)的感覺墊絲摩擦表面的摩擦。機(jī)器操作線程的電線通過指導(dǎo)和滑輪和調(diào)整鎖模力手動和直觀地表現(xiàn)出來。其優(yōu)點(diǎn)是:簡單,隨時可用,便宜,適應(yīng)任何運(yùn)行速度。缺點(diǎn)也是顯而易見的。墊磨損很快,導(dǎo)致緊張局勢的損失,該作用力僅和一般的速度無關(guān),必須加強(qiáng)和更換頻繁,直觀的張力設(shè)置不允許良好的
11、控制和沒有線軸形狀補(bǔ)償。</p><p><b> 三.模型識別</b></p><p> 導(dǎo)線從線軸穿過的張力裝置,通過機(jī)器,并上矩形線圈。該系統(tǒng)簡化,如圖1所示的只是一個固定的饋送點(diǎn),那里的張力被應(yīng)用,旋轉(zhuǎn)矩形代表筒子或線圈。</p><p> 理想的運(yùn)行速度為1000轉(zhuǎn)。給出了一個線速10 - 30米/秒取決于在一特定時刻線圈的大小
12、。圖3顯示了由筒子長方形生產(chǎn)線速度的變化。</p><p><b> 圖3:線速度的變化</b></p><p> 圖4顯示了線加速度的變化,這也可以通過該行或圖形的速度衍生斜坡看到。</p><p><b> 圖4:線加速度變化</b></p><p> 線路路徑長度的變化,從固定的饋點(diǎn)到
13、纏線點(diǎn),如圖5所示。</p><p><b> 圖5:線長度的變化</b></p><p><b> 四.原型系統(tǒng)設(shè)計</b></p><p> 圖6中的系統(tǒng)集成了一個相對較新的氣動裝置稱為流體肌肉。流體肌肉由無紡布和柔性材料制造而成,在空氣壓力下運(yùn)作,在膨脹的壓力下向橫向和縱向擴(kuò)展。預(yù)置壓力決定的最高和最低的力量也
14、將適用于特定的收縮。肌肉非常類似于傳統(tǒng)的氣缸,除了它有一個非常快速的反應(yīng),并沒有什么不同高度動態(tài)彈簧。它還行為緊張和不壓縮,可以適用于除傳統(tǒng)的氣缸相同直徑的10倍以上的力量。肌肉控制舞蹈手臂的動作,并采取了釋放導(dǎo)線的力道。這種壓力設(shè)置適應(yīng)所需的電線一系列張力變化。</p><p> 圖6:流體動力舞蹈手臂肌肉</p><p> 圖7:流體動力蓄電池肌肉</p><p
15、> 肌肉的流體動力蓄電池原型系統(tǒng)如圖7所示的氣缸使用的蓄電池,是與肌肉所取代,操作大致是相同的。</p><p> 信號以mV顯示,張力范圍大概在75N到85N之間,用于測試的線直徑為1.5mm,在信號嘈雜的情況下,張力的變化可以清楚地觀察到。</p><p><b> 五.實(shí)驗結(jié)果及分析</b></p><p> 實(shí)驗使用上述反
16、應(yīng)構(gòu)建原型系統(tǒng)進(jìn)行了觀察。</p><p> 流體技術(shù)舞蹈手臂肌肉:低速的手臂最初有反應(yīng),但在時間過長便急劇抽搐,如預(yù)期的一樣不均勻地運(yùn)動。導(dǎo)線似乎比沒有手臂肌肉震動更劇烈。第一層的繞組已經(jīng)從最初的地方向內(nèi)約300毫米。在高速時手臂沒有回應(yīng),只是均勻的立場振動。</p><p> 流體肌肉蓄電池技術(shù):動力蓄電池的肌肉試驗得出了以下結(jié)果:在低速累加器根本沒有回應(yīng)。變壓力沒有顯著差異;在高
17、速時累加器沒有回應(yīng)。由于沒有從蓄電池整個系統(tǒng)的振動響應(yīng),使電線和增加穿越振動。</p><p> 在用張力傳感器搜集數(shù)據(jù)之前,蓄電池如圖8所示。最大和最小張力分別約為62 N和46 N。</p><p> 圖8:沒有累加器的張力傳感器的輸出</p><p> 圖9:有累加器的張力傳感器的輸出</p><p> 張力傳感器在使用時收集的
18、累加器數(shù)據(jù)如圖9所示。最高和最低張力分別約為43 N和37 N。</p><p><b> 六.結(jié)論</b></p><p> 矩形線圈是配電變壓器的重要組成部分。由于線圈形狀,線圈的繞組線張力產(chǎn)生波動。這些波動導(dǎo)致電線破損,線圈尺寸不一致,多余的機(jī)器磨損,限制對卷繞速度和變壓器故障。從我們現(xiàn)有張力系統(tǒng)的研究,雖然發(fā)現(xiàn)流體肌肉累加器是最合適的選擇,但是不是非常滿足
19、我們的要求。由于目前的張力系統(tǒng),不是一個合適的補(bǔ)償接口,決定向扁平絲機(jī)的基礎(chǔ)上進(jìn)行實(shí)驗和仿真。因此,平線中使用的氣瓶發(fā)生肌肉的機(jī)器成為可行性建議。新的繞線機(jī)將增加幾乎一倍當(dāng)前卷繞速度,估計每臺機(jī)器每年可節(jié)省約59100美元。新的張力系統(tǒng),可以達(dá)到到500 N的恒張力,而不會產(chǎn)生大量的熱量,從而克服了當(dāng)前摩擦的相關(guān)問題。</p><p><b> 外文原文</b></p>&l
20、t;p> Tension Control of a Winding Machine for Rectangular Coils</p><p><b> ABSTRACT</b></p><p> Abstract--This paper introduces the design and testing of tension control protot
21、ype systems to minimise these tension variations, which includes a fluidic muscle powered take up arm, a fluidic muscle wire accumulator and felt pad. First the model and their limitations for existing tensioning systems
22、 are identified. Then, they are theoretically analysed in simulations. The simulation results show that the acceleration and deceleration of the wire</p><p> due to the changing wire path length causes a cy
23、clic tension fluctuation. An online tension sensor verified the predictions of the model. The key for a successful design is to remove tension variations. We propose to add a wire flattening machine which includes an acc
24、umulator and tensioning device, and replace the conventional pneumatic cylinder powering the accumulator with a fluidic muscle. The simulation shows that the new prototype system almost doubles the winding speed with a t
25、olerable ten</p><p> Keywords—Tension control,: Winding Machine,: Rectangular Coil。</p><p> INTRODUCTION</p><p> Thousands of transformers are manufactured each year in Australia
26、. In conjunction with power stations, substations, and power lines, the distribution transformers provide power to both commercial and residential applications right across the country. The manufacture of transformers in
27、volves the production of windings or coils. These coils are generally made up of a number of turns of copper wire in between layers of insulation paper. They are usually either round or rectangular.</p><p>
28、 During coil winding a consistent tension is required on the wire. The shape of the coil being wound has a significant impact on the quality of the tension applied by the tensioner. For a round coil the tension does not
29、vary significantly during one revolution, but a rectangular coil causes the wire tension to fluctuate. As a rectangular coil is being wound, the speed of the wire feeding onto the coil accelerates and decelerates as the
30、coil turns on the winding machine shaft. This is shown in fig</p><p> Figure 1: Acceleration due to changing wire path length during winding</p><p> The varying tension results in the loading
31、on the machine traverse and main shaft to vary, leading to excessive forces and machine vibrations. This in turn can cause wire cross overs and variations in the coil. When these problems occur, it is a time consuming ta
32、sk to remedy. In addition, the coil production capacity of the plant is the limiting factor in the plant’s overall capacity, so any interruptions to the output of coils limits the whole factory. Common wire tensioning de
33、vices on the mark</p><p> This paper further investigates the tension fluctuation problem and to achieve a consistent wire tension while winding a rectangular coil at high speed. In the following section is
34、sues of the winding processes are described, and the available techniques for tensing are reviewed.</p><p> BACKGROUND</p><p> The existing winding system shown in figure 2 uses felt pads for
35、tensioning. The spool of wire to be wound is mounted into its housing vertically and the wire is fed up through the wire guide and felt pads, over the guide pulley and then to the winding machine. The tension is varied b
36、y tightening or loosening the large g-clamp.</p><p> Figure 2: Existing wire mounting and tension setup</p><p> Felt pads are one of the simplest and most commonly usedwire tensioning methods.
37、</p><p> The photo in figure 2 shows the main components and principle of operation. The configuration shown above uses a g-clamp to apply a squeezing force to the felt pads. The wire is passed through the
38、felt pads and hence some of the force applied to the felt pads is also applied to the wire. In operation, the wire travels through these felt pads and the retardation or tension force is created by the friction of the su
39、rface of the enamel coated wire rubbing on the felt pads. The machine operator thre</p><p> MODEL IDENTIFICATION</p><p> The wire travels from the spool through the tensioning device, over the
40、 machine traverse, and onto the rectangular coil. The system was simplified as shown in figure 1 to just be a fixed feed point, where the tension is applied, and a rotating rectangle representing the bobbin or coil.</
41、p><p> The desired operating speed is 1000 RPM. This gives a wire speed of 10 - 30 m/s depending on the coil size at a particular instant in time. Figuer3 shows the variation of the wire velocity produced by t
42、he rectangular shape of the bobbin.</p><p> Figure 3: The wire velocity variation</p><p> Figure 4 shows the variation of the wire acceleration, which can also be seen by the slope of the line
43、 or derivative of the velocity graph.</p><p> Figure 4: The wire acceleration variation</p><p> The wire path length variation, from the fixed feed point to the wind on point, is shown in figu
44、re 5 below.</p><p> Figure 5: The wire length variation</p><p> PROTOTYPE SYSTEM DESIGN</p><p> The system in figure 6 incorporates a relatively new pneumatic device called a flu
45、idic muscle. The muscle is made of a woven, flexible material and operates under air pressure. Under pressure it expands laterally and contracts longitudinally. A preset pressure determines the maximum and minimum forces
46、 it will apply for a specific contraction. The muscle is very similar to a conventional pneumatic cylinder, except it has a very fast response and is highly dynamic, not unlike a spring. It also act</p><p>
47、 Figure 6: Fluidic muscle powered dancing arm</p><p> Figure 7: Fluidic muscle powered accumulator</p><p> The fluidic muscle powered accumulator prototype system is shown in figure 7, where t
48、he pneumatic cylinder used in the accumulator is replaced with a muscle, otherwise the operation is the same as outlined previously.</p><p> While the signal was noisy, the tension variations can be clearly
49、 observed. The signal shown is in mV, which translates into a tension range of approximately 74 N to 83 N for the 1.5 mm wire used in the test.</p><p> EXPERIMENT RESULT AND ANALYSIS</p><p> T
50、he tests were carried out to observe the response using the above constructed prototype system.</p><p> Fluidic Muscle Powered Dancing Arm: At low speed the arm responded initially but operated in long shar
51、p jerks, not smooth side to side movements as expected. The wire appeared to vibrate more with the dancing arm, than without. At the end of winding one layer the resting position of the arm moved from its initial positio
52、n inward approximately 300 mm. At high speed the arm did not respond, but just vibrated about a mean position.</p><p> Fluidic Muscle Powered Accumulator: The trial of a large muscle powered accumulator gav
53、e the following results:At low speed the accumulator did not appear to respond at all. Varying the pressure made no significant difference, other than pull the wire through the felt pads. At high speed the accumulator di
54、d not respond. With no response from the accumulator the whole system vibrated, making the wire and traverse vibrations increase.</p><p> The tension sensor data collected before the accumulator was used is
55、 shown in figure 8. The maximum and minimum tension is approximately 62 N and 46 N respectively.</p><p> Figure 8: Plot of tension sensor output without the accumulator</p><p> The tension sen
56、sor data collected when using the accumulator is shown in figure 9. The maximum and minimum tension is approximately 43 N and 37 N respectively.</p><p> Figure 9: Plot of tension sensor output with the accu
57、mulator</p><p> CONCLUSIONS</p><p> Rectangular coils are important part of distribution transformers. When winding these coils the wire tension fluctuates due to the coil shape. These fluctua
58、tions lead to wire breakages, inconsistent coil dimensions, excess machine wear, limit on the maximum winding speed and transformer failure in the field. From our comprehensive research into existing tensioning systems,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--矩形繞線機(jī)的張力控制.doc
- 外文翻譯--矩形繞線機(jī)的張力控制.doc
- 外文翻譯--矩形繞線機(jī)的張力控制.doc
- 畢業(yè)論文外文翻譯-矩形繞線機(jī)的張力控制
- 外文翻譯=矩形繞線機(jī)的張力控制=2300字符.doc
- 外文翻譯=矩形繞線機(jī)的張力控制=2300字符.doc
- 光纖繞線機(jī)控制系統(tǒng)的研制.pdf
- 光纖繞線機(jī)精密控制系統(tǒng)的研究.pdf
- cnc繞線機(jī)簡易調(diào)機(jī)步驟
- 繞線機(jī)俯視圖.dwg
- 自動繞線機(jī)課程設(shè)計
- 繞線機(jī)俯視圖.dwg
- 繞線機(jī)俯視圖.dwg
- 繞線機(jī)俯視圖.dwg
- 基于-plc控制的繞線機(jī)系統(tǒng)的設(shè)計及檢修
- 基于plc控制的繞線機(jī)系統(tǒng)的設(shè)計與檢修
- 精密繞線機(jī)控制系統(tǒng)設(shè)計與實(shí)現(xiàn).pdf
- 自動繞線機(jī)控制系統(tǒng)研發(fā)與應(yīng)用.pdf
- 空心杯線圈繞線機(jī)控制系統(tǒng)設(shè)計.pdf
- 繞線機(jī)單片機(jī)控制系統(tǒng)的設(shè)計與開發(fā).pdf
評論
0/150
提交評論