外文翻譯--現(xiàn)有的建筑物上增加的雪荷載和風荷載效應挪威建筑物可靠性分析_第1頁
已閱讀1頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  外文翻譯一:</b></p><p>  外文原文一出處:DOL: 10.1061/(ASCE)0733-9445(2006)132:11(1831)</p><p>  現(xiàn)有的建筑物上增加的雪荷載和風荷載效應:挪威建筑物可靠性分析</p><p>  Vivian Meloysund, Ph.D. ; Kim R

2、obert Liso, Ph.D. ; Jan Siem ; and Kristoffer Apeland</p><p>  摘要:對來自在挪威的20個現(xiàn)有建筑物上的一個雪荷載和風荷載效應的調查結果分析。由于存在雪荷載或風荷載,所以需要調查在哪些范圍內的現(xiàn)有的建筑物會與現(xiàn)有的規(guī)范要求或者抵抗倒塌的安全度有關。十八個建筑物在現(xiàn)在的規(guī)范之下有一個超過1.0的利用比。新的設計規(guī)范已經開始應用到大部分的建筑上,與現(xiàn)在規(guī)

3、范,對于雪荷載和風荷載效應,對于減少坍陷的安全性有較好的安全度。當評估一個國家的規(guī)劃具有哪些可能結果的時候,建筑物的大部分的數據依照現(xiàn)行的房屋建筑規(guī)范來評估,那么可靠性是很低的。對未來的氣候變化的研究表明雪荷載和風荷載在很大程度上會有增加的趨勢,大面積的屋頂也會在強烈的風荷載下需要承受更多的危險。因此,在將來這些建筑物的可靠性將會降低。</p><p>  關鍵字: 承載力; 建筑物; 氣候上的變化; 挪威; 可

4、靠性; 雪載重; 結構設計; 結構的安全性; 風荷載</p><p><b>  緒論</b></p><p><b>  背景</b></p><p>  在1999/2000年的冬天,挪威北部的巨大雪載導致部分建筑物倒塌。在Bardufoss社區(qū)活動中心的意外事件中,屋頂塌陷甚至造成三人死亡,這是所有這類性質的意外事件

5、中最嚴重的(圖1)。當該建筑物建成后,屋頂上的雪載就超過其原來設計當初的標準荷載,而且此坍陷的最重要的因素之一是在屋頂上有一個構造過失。</p><p><b>  圖1</b></p><p><b>  主要目標和定界線</b></p><p>  調查的主要目標是獲得關于雪荷載或/和風荷載的作用下,以及在現(xiàn)行的規(guī)范標

6、準約束下,挪威現(xiàn)有建筑抵抗塌陷的可靠性研究調查。以及,在未來挪威氣候改變的條件下,如何分析并建立一個原理和模型。本次調查分析包括設計文件,20座曾經經歷過五次較大雪載作用的,五次強風荷載作用的,至今仍然存在的建筑物。統(tǒng)計資料包括了大約三百七十萬在挪威注冊登記建筑物的建筑類型,建筑年限,地質資料。特別需要注意的是那些無遮掩,完全暴露在風荷載或者雪荷載作用下的建筑物。評定是否合理那要決定于規(guī)范中的一些數據在設計中使用是否準確,理論上的參數是

7、否包括在正常范圍之內。調查把重心集中在評估建筑物的主要負荷-支承結構,或者更小的范圍甚至可以僅是副載重-支承結構。表1列舉了各年份挪威各地區(qū)所發(fā)生塌陷事故的建筑。</p><p>  表1 主要由雪載引起的塌陷事故</p><p><b>  房屋建筑設計規(guī)范</b></p><p>  關于雪荷載和風荷載效應的荷載規(guī)范</p>

8、<p>  1949年12月15日發(fā)布的房屋建筑規(guī)范在對于雪荷載的設計時屋頂雪荷載大致在1.5KN/m左右。在單獨建設的房屋上,不管這個估算是減少了還是荷載增加了都需要由政府權威部門批準才可以執(zhí)行。屋頂上的雪荷載與屋頂的形狀有關,但是其荷載標準值大小卻以簡單的方法來計算。一般正常的建筑物設計中風壓是等于1.0 KN/m,而無遮掩部分的面積,其風載應該要等于1.5 KN/m。完全暴露于風壓作用下的建筑面積,建設的主管當局可以批準

9、增加這些風壓荷載的大小。一個封閉建筑的迎風和背風的系數總和可以是1.2。</p><p>  在1970年挪威建筑規(guī)范NS3052中,是由雪載圖來說明哪些區(qū)域雪載達到1.5 KN/m,哪些在1.5KN/m和2.5 KN/m之間, 哪些在2.5 KN/m以上。風荷載則是由四種曲線把各區(qū)域分為A,B,C,D四種,在圖2中可以看到。規(guī)范應用更多更詳細的標準數據來指出迎風和背風墻的系數也是1.2。與1949年的房屋建筑規(guī)

10、范相比,在NS 3052中,不同的是它更多的指明了在空曠地區(qū)的風速壓力是相對較小的。同時,在NS3052中,也介紹了部分傳遞系數,當風壓作用時的部分傳遞因數被設定成1.5的時候,雪荷載的部分傳遞因數則要設定成1.6。</p><p>  在2002a挪威標準規(guī)范中,整個國家的434個行政區(qū)域都被分區(qū)并詳細的說明了風壓標準規(guī)范。由風的參考速度來定義方位(在22 m/s和31 m/s之間變化)。在迎風的10km區(qū)域,

11、地面的粗糙程度對風壓是很重要的。在規(guī)范里成為速度風壓,也有五個關于地形粗糙程度的定義。另外其它重要的因素包括風向、建筑高度、地形也需要列在考慮范圍之內。</p><p><b>  圖2</b></p><p>  在這個規(guī)范的修正方法中,挪威標準規(guī)范1999(NS 3490)則為環(huán)境的負荷規(guī)定一個50年的重現(xiàn)周期。環(huán)境負荷部分的傳遞系數被設定成1.5。部分的傳遞系數

12、要乘以一個縮減系數k。</p><p>  規(guī)范的廣泛修訂已經相當大的增加了規(guī)范的詳細程度。目的是為了符合表2的要求,從而達到一個安全的水平。換句話說,目的是為建筑物能達到一個相對的可靠度要求而制定了一個比較統(tǒng)一的安全等級要求,即使建筑物在不同的區(qū)域建造,但如果有些結構處于不同的可靠度等級,那么就具有不同的安全水平。</p><p>  表2 可靠性等級、建筑類型、可靠性系數和塌陷概率&l

13、t;/p><p>  meloysund等人詳細描述風荷載效應和雪荷載的設計荷載發(fā)展歷史。</p><p><b>  選擇標準及方法</b></p><p><b>  使用范圍</b></p><p>  在人多的時候發(fā)生建筑塌頂的后果要比人少的時候要嚴重的多,因此在公共建筑,如體育館,若是發(fā)生類似

14、的事件,后果是非常嚴重的。但是要是在倉庫里發(fā)生類似的倒塌事件,那后果的嚴重性將會減少很多,這在規(guī)范中也有表述。在現(xiàn)行的規(guī)范下,對于易產生嚴重后果的公共建筑則有更強硬的強制性。</p><p><b>  材料使用與截面尺寸</b></p><p>  相對于雪荷載來說,輕型屋頂的比重是很小的,但仍是要承受住雪荷載的作用。如果當雪荷載標準值超過設計標準值時,那么承受荷載

15、的能力要隨著雪荷載增大而增加相同的百分比。如果特定的承載力已經很高了,那么相應的增長可以相對少。因此,輕型結構相對于重型結構來說,前者更適用于積雪量超過負荷而設計的結構,而后者則比較困難。換句話說,重型結構有較大的內置的安全,當負荷增加超出本身的承載能力時,則還要考慮其內置的安全。</p><p>  另一個選擇的標準是建筑物跨度的大小,一幢建筑物若是跨度很大,那它往往容易倒塌。</p><p

16、>  很多類型的工程對不平衡受荷是相當敏感的。當結構在清理積雪的時候,那就是前面所講的結構所承受的荷載大于清理前的情形。而且有很多清除積雪的時候導致建筑物倒塌的例子也是存在的。因此,重要的是要知道在清理積雪期間,建筑物是否可以承受不平衡的荷載。</p><p>  工程年限、荷載、地質情況</p><p>  從1949年到今天,建筑荷載設計已經有很大的變化。因此,建設工程的時間可能

17、會告訴我們建筑物的安全水平。一般來說,在高降雪地區(qū)老的建筑物比同樣地區(qū)新的建筑物安全水平要低一些。至于風荷載,不同安全等級的建筑也稍微是不同的。</p><p>  在遭受嚴重的環(huán)境荷載的區(qū)域中安全水平或許已經被影響而下降,現(xiàn)在的雪荷載和風荷載效應的設計已經從過去適用于整個國家區(qū)域,調整到挪威真實的環(huán)境荷載變化,從而一般情況下荷載標準值都是需要增加的。因此,在挪威西北部的北方海岸區(qū)域,風荷載設計中大多比別的區(qū)域都

18、是較大的。建筑物地方性以及所在地方的地質粗糙程度也是研究雪荷載和風荷載的重要數據資料。</p><p><b>  構造方法</b></p><p>  預制結構現(xiàn)在仍然在使用中,它的結構設計計算也不一定按照設計的標準,許多結構都是按照挪威實際的雪荷載來設計的。許多需要進行雪荷載設計的結構也可以請國外關于雪荷載設計比較有成就的國家來做,比如像丹麥。</p>

19、<p><b>  選中的建筑物</b></p><p>  基于以上的調查評估,從所有建筑物中挑選20座建筑物,說明了建筑物所在的地區(qū),建筑物的類型和建筑所在地方的參考風速度及常遇的雪荷載。如表3所示,這些已經被挑選的建筑物都是不向外泄露的。而問題是如何獲得這些必要的文件。</p><p>  其中三座建筑物是1970年以前建造的,八座建筑物是1970

20、-79年之間建造的,九座建筑物是1979年以后建造的,這表示這三座建筑物的荷載是由1949年建筑規(guī)范決定,而八座建筑物是1970年建筑規(guī)范決定,最后那九座建筑物是由1979年建筑規(guī)范決定的。</p><p>  工程文件研究以及現(xiàn)場研究</p><p>  經對建筑物在建造的時候使用的計算模型、荷載、荷載影響力、解決方案的調查研究。荷載影響效應是與新的荷載要求相一致,承載力也與新荷載的要求

21、相一致。經過這些分析,結構的利用比已經與新的計算規(guī)范相一致,同時要加強利用比。</p><p>  表3 挑選建筑的數據概要</p><p><b>  結果</b></p><p><b>  截面尺寸與材料數據</b></p><p>  外部尺寸,最大跨度,主體結構的材料見表3。建筑物的外部尺

22、寸包括寬度、長度、高度和屋頂斜坡。高度為建筑物房屋屋頂檐口到地面的高度,所有超出的或者是延伸的都不是尺寸范圍之內。</p><p>  正如表中的估算所所呈現(xiàn)出的,選定的建筑物大多是中型跨度建筑。坡屋頂的角度介于0和26度之間,所有建筑物高度都與其寬度和長度相關。實質上,建筑物都列入輕質結構的調查之列,因為預計這些類型的大廈是最為脆弱的。</p><p><b>  文件的可用性

23、和等級</b></p><p>  根據市政府提供的資料,共有20座建筑物被挑選出來,具有可利用文件的建筑擁有優(yōu)先權。因此早期結構上有內置的建筑結構是不公開的而且也是不允許被調查研究的。但是獲得這些文件是很有必要的,這樣可以從文件中知道內置結構的特點。如果能提供文件資料,這種建筑物是肯定要進行廣泛的調查研究。即使建筑物有詳細設計資料,那也是有缺陷的,所以在這項調查的范圍內我們不會去評估這方面的意義。&

24、lt;/p><p>  選中的建筑物缺乏重要文件肯定會影響調查結果,接著計算必須根據自己的假設和估算,這可能不同于構造的(提高的資料可供結構計算)。隱蔽資料導致結構性措施可能會增多,在缺少文件的情況下,就難以查明原因,最終不能明確的選擇結構設計方案。</p><p>  設計雪荷載和選定建筑的風荷載的更改</p><p>  表3列出了當前要求下那些被選擇的建筑在特定范

25、圍內其典型的雪荷載,以及速度特性的風壓力。在所選建筑物資料中Andoy 2、Frana1和 Nittedal1一起引述成"a"和"b"。在這里, "a"意思是最初的建筑物,而"b"是指,之后增加的建筑(或延長建筑年限的建筑)。此外,這些資料也顯示了建筑設計中荷載的變化,這里的荷載設計要求是與當時的規(guī)范相一致。表3說明了雪荷載在0.8和2.7之間更改設計的差別

26、,其均值等于1.6。在建筑物之間風壓變化設計相應處差別有0.4、1.4和均值0.9。換句話說, 平均雪荷載設計在增加,同時,風壓平均設計值在下降。</p><p>  正如所選建筑物的資料所示,在兩個不同行政區(qū)域的兩座建筑讓人體驗到減少積雪負荷的設計。一種是積雪負荷水準不變,然而另外一種是積雪負荷遞增。在對大部分關于積雪負荷設計建筑的調查中,我們發(fā)現(xiàn)對積雪負荷設計的變化已經成為一項主要的要求。在調查的建筑中低坡度

27、的建筑占了優(yōu)勢,由于屋頂受積雪負荷在背風面因素的影響下,屋頂的傾斜度已經在15度到60度之間增減。在一座7幢建筑的屋頂中傾斜度大于15度,負荷設計的增長平均為1.4。這個數據低于整體建筑的普通平均值。</p><p>  風荷載規(guī)范方面變化還不像雪荷載規(guī)范那樣有了很大的差別,但是風荷載規(guī)范所產生的改變也是需要進行研究調查。就像所選建筑物資料所列出的,規(guī)范上的改變往往導致Andoy和Frana兩個海邊地方的建筑所受

28、風荷載變化。在被調查的建筑物中,風荷載與建筑物的寬度、長度都沒有太大的聯(lián)系。這個形式的建筑物,迎風和背風的墻壁形狀因素的總數在NS3491-4上等于0.85 ,當換成是高層建筑時,這個系數就變成了1.5。在較早的規(guī)范中,不管是什么建筑,對應的形狀系數都是1.2。換句話說,形狀系數在被選擇的建筑物中都是比較小的,同時,若是這建筑物的寬度和長度更大,那么其形狀系數會變的更小了。減少建筑物設計風荷載,在多高層建筑中是不允許的。</p&g

29、t;<p><b>  討論</b></p><p>  如前所述,大部分挪威建筑物的無遮擋面積有5%,是總建筑面積的11%,因此選定調查建筑物類型是認為以后是要暴露在雪荷載和風荷載下來建設的建筑,具有典型的意義。</p><p>  在調查的建筑物中,90%的建筑的荷載設計與現(xiàn)行的荷載規(guī)范相比都是較低的。因此,在整個挪威可能有4.5%的建筑結構設計都是

30、可能或者完全過低于現(xiàn)行的荷載設計標準。在95%的被調查的建筑物中,雪荷載的增加表明挪威現(xiàn)在有4.7%的建筑物在設計雪荷載時也增大了其標準值。被調查的55%被指出錯誤的建筑物有了更高的利用比,或者因為有了錯誤的雪荷載值而重新進行設計建造。因此,在挪威的建筑物可能有超過荷2.8%的建筑有較高的利用比。但是調查的只有20幢,這是個不足。不過,也是具有可信度的。</p><p><b>  結論</b&g

31、t;</p><p>  此項調查研究的主要目的是獲得可靠度的指標, 挪威現(xiàn)有建筑物是否符合當前安全監(jiān)管的關于抵抗塌陷是由于雪荷載和/或風荷載效應造成的要求。從調查的結果表明這些方面應該是以后建筑物設計建造的發(fā)展趨勢的典型代表。</p><p>  因為剛剛才開始建造這類的建筑,所以20幢建筑中有18幢建筑的利用比超過1.0(是調查建筑的90%),我想以后還會增加的。盡管如此,假設一幢建筑

32、有內置安全結構,那么這類建筑的利用比是很少超過1.0的。</p><p>  未來氣候變化情況表明冬天的降水量的增多以及溫度的上升,會導致各地的屋面雪荷載的增加。根據這些情況,估計今后建筑物的可靠性還會降低。</p><p><b>  認證</b></p><p>  本文寫在正在進行研究和發(fā)展的SINTEF計劃, "一個更加嚴峻的

33、2000年的建筑氣候條件"(2000-2006),戰(zhàn)略研究所項目"氣候變化給建筑環(huán)境帶來的沖擊"。(2005Liso等人著)。作者致謝所有挪威建筑業(yè)研究委員會的委員。特別感謝Jan Vincent教授,也很感謝Karl Vincent Hioseth教授和Tore Kvande教授為文章寫的評論。</p><p><b>  參考文獻</b></p>

34、<p>  Karl, T. R., and Trenberth, K.E. (2003). “Modern global climate change.” Science, 302 1719-1723</p><p>  National office of Buildings Techolgy and Administration. (1993). “Orkan 1992.” Norwegian

35、 Building Research Insititue, Oslo, Norway (in Norwegian).</p><p>  Standards Norway. (1970). Beregninger av belasninger, NS 3052, 1st Ed., Standard Norway, Oslo, Norway (in Norwegian).</p><p>

36、;  Standards Norway. (1970). Prosjektering av bygningskonstruksjoner Dimensjonerende laster, NS 3479, 1st Ed., Standard Norway, Oslo, Norway (in Norwegian).</p><p>  Standards Norway. (1999). Design of str

37、uctures Requirements to reliability, NS 3490, 1st Ed., Standard Norway, Oslo, Norway (in Norwegian).</p><p>  Standards Norway. (2002a). Design of structures Design actions1st Ed., Standard Norway, Oslo, N

38、orway (in Norwegian).</p><p>  McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., and White, K.S., eds. (2001). Climate change 2001: Impacts, adaptation and vulnerability, Cambrige University Press,

39、 Cambriged, U.K.</p><p><b>  外文原文一:</b></p><p>  Increased Snow Loads and Wind Actions on Existing Buildings: Reliability of the Norwegian Building Stock</p><p>  Vivia

40、n Meloysund, Ph.D. ; Kim Robert Liso, Ph.D. ; Jan Siem ; and Kristoffer Apeland</p><p>  Abstract: Results from an investigation of snow loads and wind actions on 20 existing buildings in Norway are presente

41、d. The objective has been to investigate to what extent existing buildings meet current regulatory requirements relating to safety against collapse owing to snow loads or wind actions. Eighteen buildings have a utilizati

42、on ratio of more than 1.0 under current regulations. The new design rules have led to most of the buildings investigated having reduced safety against collapse ow</p><p>  DOL: 10.1061/(ASCE)0733-9445(2006)1

43、32:11(1831)</p><p>  CE Database subject headings: Bearing capacity; Buildings; Climatic changes; Norway; Reliability; Snow loads; Structural design; Structural safety; Wind loads.</p><p>  Intr

44、oduction</p><p>  Background</p><p>  Large snow loads on during the winter of 1999/2000 led to the collapse of several buildings in northern Norway. The accident at Bardufoss Community Centre,

45、where the roof caved in and claimed three lives, was the most serious of these accidents (Fig.1). The most important causes of this collapse were a faulty construction of the roof when the building was erected and larger

46、 snow loads on the roof than it was designed for.</p><p>  Principal Objectives and Delimitations</p><p>  The principal objective of the investigation has been to obtain a reliable indicator as

47、 to whether existing buildings in Norway meet current regulatory requirements concerning safety against collapse owing to snow loads and/or wind actions, and also to establish a basis for the analysis of future climate c

48、hange impacts on the Norwegian building stock. The analysis encompasses design documentation investigations and field studies of 20 existing buildings in five high-snowfall and five high-wind m</p><p>  Buil

49、ding Regulations and Design Codes</p><p>  Development of Design Codes for Snow Loads and Wind Actions</p><p>  The building regulations of December 15, 1949 referred to a general snow load on r

50、oofs corresponding to 1.5KN/m. This value could be reduced or increased by the individual building authority with the Ministry’s approval. The importance of the shape of the roof for the size of the snow load on the roof

51、 was calculated in a simple way. Structures should normally be designed for a wind pressure equal to 1.0 KN/m, while a wind pressure equal to 1.5 KN/m should be used in exposed areas. In heavily exp</p><p> 

52、 In NS 3052 (Standard Norway 1970) snow maps were introduced showing zones with roof snow loads values of up to 1.5 KN/m, between 1.5 KN/mand 2.5 KN/m, and above 2.5 KN/m. Four curves for the wind pressure were introduce

53、d: Curves A, B, C, and D, as seen in Fig.2. The code quoted many more-detailed rules for the wind shape factors for the lee and windward walls was in the code also set to 1.2. Compared to the building regulations of 1949

54、, the changes in NS 3052 largely implied a reduction in the w</p><p>  In NS 3497-4 (Standards Norway 2002a), a classification of the whole country has been carried out so that wind exposure for all 434 muni

55、cipalities is defined. Exposure is defined by means of a reference wind velocity (varies between 22 m/s and 31 m/s). Roughness of the terrain in an area 10 km against the wind direction is important for the wind pressure

56、 (in the code called the gust velocity pressure). The code defines five such categories of terrain roughness. Other parameters of importance for</p><p>  In this regulation amendment process, NS 3490 (standa

57、rds Norway 1999) prescribes a 50-year return period for environmental loads. The partial factors for environmental loads are set to 1.5. A reduction factor kby which the partial factor must be multiplied is introduced.&l

58、t;/p><p>  The extensive revisions of the codes have increased the level of detail in the regulations considerably. The objective is to achieve a safety level in accordance with Table 2. In other words, the int

59、ention is to achieve a more uniform safety level for buildings that have the same reliability class even if they are built in different places, and also to obtain different safety levels for structures classified in diff

60、erent reliability classes.</p><p>  A thorough description of the historical development of design loads for wind actions and snow loads is presented by Meloysund et al.(2004).</p><p>  Selectio

61、n Criteria and Methodology</p><p>  Limits of Use</p><p>  The consequences of a collapse are greater in buildings in which many people are present than in buildings with few people. A collapse

62、in public buildings such as sports halls, and the like has. Therefore, greater consequences than, for example, in storage facilities in which it is less probable that people will be present. This is also apparent from th

63、e reliability approach set out in numbers in Table 2 in which, under current rules, more stringent requirements are imposed on structures whose c</p><p>  Material Use and Geometry</p><p>  For

64、light roofs, the specific weight is open low compared to the snow load that the roof is required to withstand. If the snow load exceeds the design value, the load has increased virtually the same percentage as the snow l

65、oad. If the specific weight had been high, the percentage increase would have been much smaller. Lightweight structures are, therefore, more vulnerable to an increase in snow load above the load for which the structure i

66、s designed than heavy structures. In other words, heavy </p><p>  Another selection criterion is the maximum span of a building. The consequences of a collapse in buildings with large spans are usually great

67、.</p><p>  A number of types of construction may be sensitive to unbalanced loads. When the structures are being cleared of snow, this may in the worst case make the stresses in the structure larger than bef

68、ore the snow clearance started. There are many examples of snow clearing leading to the collapse of structures. It is, therefore, important to know whether the structure can carry the unbalanced load that arises during s

69、now clearance.</p><p>  Year of Construction, Loads, and Geographical Location</p><p>  Design loads on buildings have changed considerably in the period from 1949 to today. The year of construc

70、tion may, therefore, tell something about the building’s safety level. In general, older buildings in high-snowfall areas may have a lower safety with respect to snow loads than newer buildings. The difference in safety

71、level with respect to wind action is probably somewhat less.</p><p>  The safety level is probably affected mostly in areas that are heavily exposed to the environmental loads, when snow loads and wind actio

72、ns in the regulation are increased from general loads that have applied to the entire country to differentiated loads that are adjusted to the actual environmental load variation in Norway. Increased wind actions, theref

73、ore, probably have the greatest consequences for coastal areas from northwest Norway northward. Locally roughness of terrain and topography and</p><p>  Construction Process</p><p>  Prefabricat

74、ed structures are often imported. It has been claimed that design calculations do not always meet the design rules set out in Norwegian codes and that many structures have been designed for relatively small snow loads co

75、mpared to Norwegian requirements. Structures have been imported from countries such as Denmark that are designed for snow loads well below those required in Norway.</p><p>  Selected Buildings</p><

76、;p>  Based on the assessments above, 20 buildings were selected Table 3 lists the municipality in which the buildings were selected, the building type, and the requirement that currently applies to characteristic snow

77、 load on the ground and to the reference wind velocity. As shown in Table 3, attempts have been made to keep the selected buildings as anonymous as possible. Problems in obtaining the necessary documentation implied that

78、 an investigation of only one building was conducted in two of the m</p><p>  Three of the buildings were constructed in the period before 1970, eight were built in the period 1970-79, and nine were built in

79、 the period after 1979. This implies that the loads are determined by the 1949 building regulations for three of the buildings, by NS 3052 for the buildings, and by NS 3479 for nine of the buildings.</p><p>

80、  Project Documentation Investigation and Field Study</p><p>  Calculation models, loads, forces, and solutions used when the buildings were constructed have been investigated. The forces in the structure we

81、re then determined in accordance with new load requirements, and the capacities checked in accordance with new load requirements. In light of these analyses, the structure’s utilization ratio has been determined in accor

82、dance with new calculation rules, and the need for reinforcement assessed.</p><p>  On site, whether the structures have defects or deficiencies that are not apparent from the project documentation of whethe

83、r or not the construction was in accordance with the documentation, and whether or not there were weaknesses in the structure owing to reduced durability or due to reconstruction.</p><p><b>  Results&l

84、t;/b></p><p>  Geometry and Material Data</p><p>  External dimensions, maximum spans, and the material of the main load-bearing structures are shown in Table 3. The building’s external dimen

85、sions are quoted as width, length, height, and roof slope. The height indicates the cornice height for buildings with other roof shapes. Additions or extensions that are not included in the assessments have not been incl

86、uded in the dimensions.</p><p>  As is apparent from the values in the table, the buildings selected can be characterized as medium-sized buildings with medium spans. The roof slope varies between 0 and 26&#

87、176;. All the buildings are of low height relative to their width and length. Essentially, the buildings included in the investigation are light-weight constructions, because buildings of this type are empirically expect

88、ed to be most vulnerable.</p><p>  Availability and Scale of the Documentation</p><p>  When the investigations started, the writers were prepared for the fact that it might be difficult to obta

89、in full documentation on the load-bearing structures in the buildings, which in this context have been defined as design calculations and structural drawings. Although there were requirements in the building regulations

90、up to 1997 that design calculations should form part of the building licence application, it is well known that many municipalities have not enforced this requirement.</p><p>  In light of the information su

91、pplied by the municipalities, a total of 20 buildings were selected. Buildings with available documentation were given priority. It was decided at an early stage that built-in structures would not be opened and investiga

92、ted. It was therefore necessary to obtain the best possible documentation so that built-in structures were known from the documentation. If there were links between available documentation, such selection criteria would

93、lead to the buildings most ext</p><p>  A lack of important documentation for buildings included in the investigation can affect the results. The calculations must then be based on our own assumptions and as

94、sessments, which may be different from the constructor’s (see Table 3 for information on available structural calculations). Deficient information on hidden, structural measures may then be significant. A lack of documen

95、tation makes it difficult to uncover the reason for chosen structural designs unambiguously.</p><p>  Changes in Design Snow Loads and Wind Actions for Selected Buildings</p><p>  Current requir

96、ements for characteristic snow loads on the ground and characteristic gust velocity pressure against the selected buildings are presented in Table 3. In Table 3, Andoy 2, Frana 1, and Nittedal 1 are quoted with “a” and “

97、b” versions. Here, “a” means the original building and “b” means additional (or extensions). Furthermore, the changes in design loads on the buildings are shown, where current requirements are compared with the requireme

98、nts that applied when the building was being d</p><p>  As Table 3 indicates, only two buildings in two municipalities experienced reduced design snow loads, one experienced an unaltered load level, while th

99、e rest experienced increased snow loads. The changes in the rules for snow loads have, therefore, been of major importance to the requirement concerning design snow loads on most of the buildings that have been investiga

100、ted. Buildings with a low roof slope dominate the investigation. Pitched roofs slopes of between 15 and 60°have been given reduce</p><p>  The changes in wind action rules have not been as important as

101、the change in the snow load rules for the design loads on the buildings in investigated. As Table 3 shows, the changes in the rules have only resulted in a significant increase in the wind action on the buildings in the

102、coastal municipalities of Andoy and Frana. The buildings included in the investigation were low in height relative to their width and length. For buildings with this form, the sum of the shape factors against the wind<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論